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CHAPTER 1. INTRODUCTION 
 

1.1 Electrochemical Detection of Trace Metals 

Detection of trace metals (i.e., Cu, Pb, As, etc.) has significant importance for 

studying biological and environmental processes.1-3 Trace metals, as essential 

micronutrients for human beings, are required in numerous metabolic and 

physiological systems. A lack or an excess of trace metals can lead to serious 

diseases such as gastrointestinal disease, liver and kidney damage, neurological 

deficits and neurodegenerative diseases.1 High concentrations of trace metals 

are introduced to the environment by anthropogenic activities such as mining, 

smelting and industrial processes. Mobilized metals are pervasive, often reaching 

and contaminating natural waters.4 Unlike organic pollutants, natural degradation 

of metal does not occur, thus metal pollution is persistent.4 Removal of metals 

from aqueous systems is essential to mitigate their negative impact on the 

environment and on humans. Typical mitigation strategies include immobilization 

and concentration via suitable sorbents to keep toxic metals at low levels prior to 

release into the environment.5 Quantitative analysis of the trace metals is a 

fundamental requirement to treat and remove trace metals most effectively. 

Because the toxicity of trace metals strongly depends on their physio-

chemical forms, including particulate (> 1 µm), colloidal (1 nm-1 µm) and 

dissolved (≤ 1 nm) species, measurements of total metal concentrations are not 

sufficient to understand metal mobilization and transport.6 Speciation (specific 

species or groups of homologous species), therefore, is the essential information 

required to apply mitigation methods. 



www.manaraa.com

2	
	

Current analytical techniques for metal determination can be divided into two 

major categories: spectroscopy7,8 and electrochemistry.6,9,10 The major 

spectroscopic methods are UV-Vis Spectroscopy, graphite furnace atomic 

absorption spectroscopy (GF-AAS) and inductively coupled plasma mass 

spectroscopy (ICP-MS). They have extensive applications in laboratory 

examinations for a variety of elements and offer high sensitivity and selectivity. 

Their applications in the field, however, are limited due to poor portability 

associated with instrumentation, high energy consumption and costs, and 

elaborate sample preparation.11 Furthermore, these methods only determine total 

metal concentrations unless they are coupled with separation and extraction 

techniques that enable speciation analysis.11 Additional analysis steps 

significantly increase the risk of contamination during sample storage and 

handling, as well as analysis time and budget. 

Electrochemistry is another widely accepted analysis method that is typically 

low cost, instrumentally compact, and technically simple. Electrochemical 

methods are particularly suitable for in-situ metal monitoring in real natural 

systems, because they do not normally require sample collection or complicated 

pre-treatment, and can be used to probe environmental water samples directly. 

Moreover, they are especially powerful for speciation analysis. The sections 

below summarize the fundamental theory, fabrication, and applications of 

electrochemical techniques for trace metal measurements. 

1.2 Conventional Electrochemical Approaches for Trace Metal Analysis  
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In the field of metal analysis, a variety of different electrochemical methods 

have been developed to quantify and/or identify trace metals and their 

corresponding ions.12 Among a variety of electrochemistry-based methods, 

stripping analysis (SA) and ion selective electrodes (ISEs) have been well 

established for both laboratory and field tests. SA is especially advantageous in 

speciation studies and for simultaneous detection of several different metals. 

Potentiometric ISEs are favored for rapid and selective quantification of certain 

analytes. Since these two methods have inspired and influenced a number of 

advancements in this field, they are specifically discussed in detail. 

1.2.1 Stripping Analysis 

Electrochemical SA was firstly reported at Pt electrodes for measurement of 

low concentrations of copper by Zbinden et al. in 1931.13 However, it wasn’t until 

Heyrovsky’s dropping mercury electrode (DME) that SA was popularized.14 In SA, 

a pre-concentration step is critical in accumulating analyte onto the surface of the 

working electrode. A detection step follows that identifies and quantifies the 

analyte of interest via voltammetry or chronopotentiometry. Trace metal analysis 

is typically carried out via Anodic Stripping Voltammetry (ASV) as shown in 

Scheme 1.1. In ASV, the pre-concentration step involves holding the electrode 

potential at a negative value for up to 20 minutes to electrodeposit (reduce) metal 

ions onto the electrode surface. The applied potential is subsequently swept in a 

positive direction to oxidize the metals to cations and strip them off the electrode. 

Mercury based electrodes are favorable because mercury creates an amalgam 

with the deposited metal ions. This amalgamation fundamentally stabilizes the 
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electrolytic deposition, and leads to sharp and theoretical shaped stripping peaks. 

Finally, different metal ions can be differentiated and quantified via the potential 

position of their anodic stripping peaks. 

Scheme 1.1. Schematic representation of the three steps in anodic stripping 
voltammetry (ASV) for metal analysis.  

 

Improvements in sensitivity are usually achieved by controlling the 

accumulation step and two major modifications have been described in this 

context: (a) addition of adsorptive materials in solution15 and (b) attachment of 

selective accumulation agents (i.e., ligand, ion-exchanger) on electrodes.16 In 

method (a), a selective complexing ligand is added to the sample and forms a 

complex with the metal; this complex is then physisorbed on the electrode 

surface. Here, either the metal cation or the ligand can be reduced for analysis. 

Method (b) is based on chemically modified electrodes. Both methods can assist 

detection of the metals that are not readily oxidized during the stripping step, or 

species that produce overlapping stripping peaks.12 
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Over the last few decades, major efforts have been made in finding an 

environmental-friendly alternative to Hg as an electrode material. Although Hg 

electrodes provide excellent sensitivity, selectivity, stability, and a wide potential 

window, they are undoubtedly hazardous and toxic to use. Carbon electrodes,17 

screen-printed electrodes,18 solid amalgam electrodes,19 bismuth film electrode,20 

microelectrodes,21 and microelectrode arrays22 have been actively investigated, 

representing various levels of promise as alternatives to Hg. 

1.2.2 Ion Selective Electrode  

ISEs are analytical potentiometric electrochemical sensors with numerous 

applications in environment, clinical chemistry, biochemical and physiological 

researches.23 The history of ISEs can be traced back to the 1930s, when the first 

glass electrodes became commercially available.24 The field of ISEs has 

progressively grown since the invention of ion-binding receptors (i.e., ionophore 

or ion carriers).25 For either type, ISEs report electrical potential depending on 

the type and concentration of the analyte ion.26 

For selective metal analysis, ionophores (e.g., crown ethers) or chelating 

agents can complex selectively to a particular metal ion of specific dimensions 

that bind into the cavities of the ionophore’s molecule structures.27 A large 

number of ionophore-based ISEs with selectivities for alkali metal cations (e.g., 

K+, Na+, Li+)28 and alkaline earth metal cations (e.g., Mg2+, Ca2+)29 have been 

described and successfully commercialized. For example, a valinomycin-based 

potentiometric ISE has replaced flame atomic emission spectroscopy as the 

standard analytical instrument in measurement of K+ in biological samples, such 
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as blood and urine.30 For transition metal ions (e.g., Cu2+, Ag+, Zn2+, Cd2+, Hg2+, 

Pb2+), advancements in ionophore designs and electrode constructions are still in 

progress.25 

Polymers31 and nano-materials9 are commonly used as ionophore-doped 

membranes to create solid-contacts. They are ideal transduction materials 

because of their highly efficient electrochemical conductivity.32 Solid contacts 

have significantly improved the mechanical stability of ISEs, however, there 

remain two critical technical issues. First, the thickness of the polymeric 

membrane usually extends the electrode response time to minutes. Next, 

formation of a water layer at the metal-membrane interface leads to instabilities, 

which shortens ISEs’ shelf life. 

ISEs provide a simple and low-cost option for ion detection in aqueous media. 

Good portability also makes ISEs suitable for online and field analysis. Major 

concerns remain in understanding the thermodynamics and kinetics that describe 

the electrochemical response and the selectivity of ISEs. For trace metals, new 

sensing modes and electrode designs, in additional to the use of novel materials, 

such as novel polymer matrixes, nanostructured materials, or biomaterials still 

are the subject of continued studies.23 Moreover, in order to develop ISEs with 

real utility for trace metal analysis, substantial progress will be required in many 

aspects such as lowering detection limits, improving selectivity, biocompatibility, 

and long-term stability. 

1.3 Fast-Scan Cyclic Voltammetry at Carbon-Fiber Microelectrodes  



www.manaraa.com

7	
	

A number of endeavors have been made to improve electroanalysis in terms 

of sensitivity, selectivity, stability, and speed. Fast scan cyclic voltammetry 

(FSCV) at carbon fiber microelectrodes (CFMs) is a powerful method that fulfills 

these criteria. FSCV at CFMs was first introduced for neuroscience applications 

in 1979;33 however, the high scan rates utilized generate a large, capacitive 

background current that drastically interferes with observation of the faradaic 

signal. In order to extract the small faradaic current from the huge charging 

current, a digital data processing program was developed to subtract out the 

background current.34   

In FSCV, an electrochemical waveform is applied to the CFM at a high scan 

rate (> 100 V/s) for rapid analysis. The waveform usually has a width of several 

ms and is applied at 10 Hz. In between each waveform application, the CFM is 

held at a resting potential and provides the time for the analyte to adsorb onto the 

CFM.35-37 When the waveform is applied, the adsorbed analyte undergoes redox 

reactions at the surface of CFM. Through optimization of the potential limits, scan 

rate and frequency, analytical performances in sensitivity, selectivity, and 

temporal resolution can be controlled. The FSCV signal is usually interpreted via 

cyclic voltammogram (CV) and color plot. For instance, Figure 1.1 is a typical 

FSCV data set for 1.0 µM dopamine analysis. Figure 1.1.A is a CV of dopamine, 

the peak potentials provide a chemical signature to identify the species detected. 

Peak current is proportional to concentration within the detection limits. Figure 

1.1.B is a color plot, which is digitally constructed through stacking a series of 

CVs in the sequence of time. It provides information for each measurement in 
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three dimensions: current, voltage, and time. Figure 1.1.C is a plot of current vs. 

time. It can be used to monitor the concentrations of the analyte.  

 

Figure 1.1. (A) CV (i vs v) taken from the white vertical dashed line in part B. 
(B) Color plot with potential on the y-axis plotted against time on the x-axis 
and the current response represented in false color. Dopamine (1.0 µM) is 
injected over the period spanning 5 to 10 s. (C) i vs time from the horizontal 
white dashed line at peak reduction potential.  

FSCV has been mainly employed for detecting electroactive species in vitro 

and in vivo, such as neurotransmitters38 (e.g., dopamine,39 serotonin,40 

histamine41), O2,42 and pH changes.43 Most recently, as I describe in this thesis, 
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our lab has extended FSCV to monitoring fluctuations of Cu2+ and Pb2+ in 

environmentally relevant studies.35,44,45 

CFMs are the conventional electrodes used in FSCV. Their micron 

dimensions render them minimally impactful on their surroundings. CFMs own all 

the advantages of carbon electrode materials such as low cost, excellent 

electrochemical behaviors, and biological compatibility. CFMs can be fabricated 

in a variety of ways, either through insulation of a carbon fiber (5 – 35 µm 

diameters) in a glass capillary and cutting the protruding fiber to form a cylindrical 

electrode (as shown in Figure 1.2), or by treating the seal with epoxy and 

polishing the tip to form an elliptical surface. The exposed carbon fiber is rich in 

surface oxygen groups, which facilitate analyte adsorption onto the electrode 

surface.35-37 

 

Figure 1.2. SEM image of a glass capillary sealed CFM.  

To meet lower detection limits, a number of novel FSCV compatible sensors 

have been developed. For instance, carbon-nanotube based microelectrodes 

have shown increased electron-transfer kinetics and sensitivity for adsorption-
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controlled species such as dopamine.46 Microelectrode arrays (MEAs), which 

incorporate multiple sensing elements onto a single device, have also been 

developed to resolve spatial profiles, and own great potential for simultaneous 

detection for different analytes.47 

1.4 Covalently Modified Carbon Electrodes  

Electrode materials play vital roles in the production of high performance 

electrodes, particularly those requiring high selectivity48,49 and those used in 

catalysis.50,51 Different methods have been applied for surface modifications, 

which includes electrostatic interactions,52 adsorption,53 non-covalent 

interactions,54 as well as covalent modifications.55 Most non-covalent methods 

share intrinsic weaknesses of slow response, short lifetime, degradation, and bad 

stability. Conversely, covalent modification is especially effective in terms of 

stability and reproducibility.56  

Herein the discussion is focused on covalent modifications of carbon 

electrodes. Carbon electrode have a number of allotropic forms such as glassy 

carbon, carbon fibers, boron doped diamond, powdered graphite, and highly 

ordered pyrolytic graphite. Since electrochemistry is fundamentally based on 

surface interactions, the nature and structure of the carbon surface significantly 

affect electrochemical behavior.57 One impacting factor is the effect of electronic 

density of state (DOS) on electron transfer.56 Another important feature of the 

carbon surface is the natural occurrence of oxygenated functional groups, 

including carboxyl, hydroxyl, ester, ketone and ether as shown in Figure 1.3.56 

These oxygenated groups influence not only electron transfer rates but also 
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adsorption. A better control of the surface properties by means of covalent 

modification is desirable to us for analysis of real samples where several similar 

metals are often present. 

 

Figure 1.3. Oxygenated groups presented at carbon material surfaces. 

There have been limited methods enabling covalent modification of carbon 

surfaces with organic molecules for improved performances. Several early 

covalent modifications include the creation of amide bonds49 and the bonding of 

acid chloride with surface hydroxyl groups.58 However, the application of these 

reactions has been fundamentally limited by low reaction yields, harsh conditions, 

and side reactions.56 

The most widely accepted covalent modification of carbon is electrochemical 

reduction of diazonium reagents created by Saveant et al. in 1992.59 This 

reaction can introduce a persistent and condensed layer of aryl molecules on 

carbon electrode surfaces through C-C bonding. Aryldiazonium functionalization 

is applicable to carbon electrodes in which the carbon atom hybridization is sp2 

(graphene, carbon nanotube, graphite) or sp3 (diamond). Different covalent 
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modification strategies using diazonium, amine, azide, and olefins have been 

tested both individually and compared to one another.60,61 Diazonium 

electrochemical reduction produced a significantly higher density of 

functionalities on electrode surfaces with improved stability.60,61 

Click chemistry, which often follows diazonium reduction to achieve post-

functionalization, carries advantages of mild reaction conditions, high efficiency 

and good selectivity. Copper-catalyzed azide alkyne cycloaddition (CuAAC), as 

the first reaction in click chemistry, occurs between azide groups and terminal 

alkynes in the presence of a Cu(I) catalytic system and moderate reaction 

conditions.62,63 CuAAC provides a fast and reproducible coupling strategy with 

few side reactions in a variety of reaction conditions. While most chemical 

modifications lead to the formation of thick, disorganized multilayer films, which 

may bring uncertainty and inconsistency to the electrode behavior, Leroux et al. 

developed a protection - deprotection method through electrochemical reduction 

of protected aryldiazonium ions followed by click chemistry to obtain 

monolayers.64,65 

Chemically modified carbon electrodes have fundamentally expanded and 

improved electrochemical sensors and biosensors. As mentioned in 1.2.1, 

adsorptive stripping voltammetry has employed ligand-grafted electrodes for 

detection of certain types of trace metals.66 Diazonium reduced modified CFMs 

were employed to achieve an accelerated adsorption rate and increased 

sensitivity for dopamine detection.67 Mediator-free biosensors have been 

developed through immobilizing enzymes directly on conducting substrates for 
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more efficient and stable glucose detections.68 In general, covalent modification 

has provided an innovative electroanalysis platform for improved electrochemical 

selectivity. 

1.5 Scope of This Dissertation   

This dissertation presents the fundamental theory, development, and 

applications of a FSCV based electrochemical technique at CFMs for real-time, 

sensitive, selective, and stable analytical trace metal measurements.  

Chapter 2 presents a Hg-free voltammetric technique that can measure Cu(II) 

with ppb sensitivity at 100 ms temporal resolution. This chapter reports the first 

example of using FSCV for the determination of trace metal species. We 

optimized electrochemical parameters including potential limits and scan rates for 

Cu(II) analysis. Our initial understanding of the mechanism of metal ions at the 

CFM interface is explained. We also described the application of using this 

technique for monitoring dynamic chemical speciation. 

Chapter 3 presents a rapid and sensitive approach using FSCV at CFMs to 

analyze Pb(II) in both model and authentic environmental solutions. In this 

chapter, we described two novel methodological advances. First, we created an 

environmentally relevant buffer solution based on geochemical models to enable 

electrochemical analysis for dissolved Pb(II). Secondly we improved FSCV 

parameters to assess the method’s sensitivity and stability while taking into 

account Pb speciation. The applicability of our novel method for monitoring rapid 

Pb fluctuations in real environmental samples was presented. 
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Chapter 4 reports a scaffolding strategy for covalent modification of CFMs. 

Although FSCV and CFM showed benefits in ultrafast and sensitive detection of 

trace metal ions, their application in more complex samples has been limited by 

analytical selectivity. Our innovative strategy provided the groundwork to 

generate analyte-selective CFMs based on a universal scheme. We expanded 

diazonium electrochemical reduction and CuAAC for covalent modification on 

CFMs. As a proof of principle, CFMs were covalently modified with ferrocene as 

an in-situ redox label through our density-controlled modification strategy. 

Chapter 5 describes the generation of ionophore-grafted CFMs for selective 

detection of Cu(II) by FSCV. Building upon our scaffolding covalent modification 

strategy, this chapter represents the first example of attaching ionophores onto 

CFMs for selective analysis in a media of mixed metal ions. We optimized not 

only organic reaction conditions but also electrochemical analysis parameters to 

achieve rapid, selective, sensitive, and stable metal measurements. This method 

will be amenable to grafting a variety of recognition components onto CFMs in a 

robust manner, and will ultimately allow real-time detection of target analytes in 

complex environmental systems. 

Chapter 6 shows the development of FSCV compatible pyrolyzed photoresist 

film (PPF) microelectrode arrays (MEAs) towards simultaneous detection of 

multiple different analytes. In this chapter, we designed a highly reproducible 

method to produce MEAs with controlled electrode surface areas without 

compromising device dimensions. A two-step pyrolysis process and a dual O2 

plasma treatment was employed to improve film adhesion and surface reactivity. 
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As a proof of principle, the compatibility of MEAs for FSCV analysis was 

demonstrated through highly sensitive and stable dopamine measurements on 4-

channel arrays. 

Chapter 7 summarizes our work and proposes future research directions. 
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CHAPTER 2. FAST-SCAN CYCLIC VOLTAMMETRY AT CARBON-
FIBER MICROELECTRODES FOR REAL-TIME, SUBSECOND, 

MERCURY FREE MEASUREMENTS OF COPPER(II) 
 

Elevated concentrations of hazardous metals in aquatic systems are known to 

threaten human health. Mobility, bioavailability, and toxicity of metals are 

controlled by chemical speciation, a dynamic process. Understanding metal 

behavior is limited by the lack of analytical methods that can provide rapid, 

sensitive, in situ measurements. While electrochemistry shows promise, it is 

limited by its temporal resolution and the necessity for Hg modified electrodes. In 

this letter, we apply fast- scan deposition-stripping voltammetry at carbon-fiber 

microelectrodes for in situ measurements of Cu(II). We present a novel, Hg-free 

technique that can measure Cu(II) with ppb sensitivity at 100 ms temporal 

resolution.  

 

Pathirathna, P., Yang, Y., Forzley, K., McElmurry, S. P., Hashemi, P. Anal. Chem. 

2012, 84(15): 6298-6302. Reprinted with permission from Copyright (2012) 

American Chemical Society.  



www.manaraa.com

17	
	

2.1 Introduction 

In urban areas, anthropogenic sources of heavy metals are a significant 

public health concern. Mobility, bioavailibity, and toxicity of metals depend on 

speciation, including complexation with inorganic and organic ligands.69,70

 

The 

ability to dynamically assess low metal concentrations in aqueous solutions is 

critical for characterizing environmental processes, assessing risks, and 

mitigating their impact. Spectroscopic techniques study heavy metals with high 

sensitivity.71-73 These instruments typically have limited portability and require 

significant sample handling, which may alter speciation. The majority of in situ 

research, aiming to understand “unaltered” speciation, has aggressively 

employed electrochemistry with the ultimate goal of a submersible field device 

(see review6 for details). While ion selective electrodes provide high sensitivity 

with temporal resolution of seconds, their response time (10 – 15 s) limits their 

application for real-time studies.74

 

Techniques such as anodic stripping 

voltammetry (ASV) have shown promise for environmental applications. ASV 

involves “deposition” of metal onto an electrode during a negative potential 

sweep. The metal is subsequently “stripped” off during a positive sweep. A 

Faradaic current during stripping is typically used to quantify the metal. The 

extreme sensitivity of ASV has hinged upon two critical factors: (a) Hg (mercury) 

modification: The “deposition” process can be unstable on conventional 

electrodes leading to inconsistencies in analyses. Hg on the electrode surface 

significantly stabilizes this process by creating an amalgam with the depositing 

metal. (b) Preconcentration: Conventional electrodes are held at a negative 
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potential for several minutes in order to preconcentrate the heavy metal on the 

electrode yielding high sensitivity.75 

Until now, few alternatives existed that could detect low metal levels without 

Hg (an environmental hazard) and with high temporal resolution (faster than 

minutes required for preconcentration). In this chapter, we present a Hg-free 

electrochemical technique that can measure [Cu(II)] with environmentally 

relevant parts-per-billion (ppb) sensitivity and importantly, a temporal resolution 

of 100 ms. This temporal improvement, of greater than 3 orders of magnitude, 

allows real-time metal speciation to be studied. 

2.2 Materials and Methods 

2.2.1 Solutions 

All chemicals were purchased from Sigma Aldrich (St. Louis, MO). The flow 

injection buffer, Tris buffer, was constituted of the following: H2NC(CH2)OH)3·HCl 

(15 mM), NaCl (140 mM), KCl (3.25 mM), CaCl2 (1.2 mM), NaH2PO4·H2O (1.25 

mM), MgCl2 (1.2 mM), and Na2SO4 (2.0 mM). All solutions were at pH 7.4, at 

room temperature and atmospheric pressure. For most experiments, Cu was 

injected at a concentration of 10 µM Cu(NO3)2 (Sigma-Aldrich, St. Louis, MO, 

USA). For calibration experiments, Cu(NO3)2 was injected in different sample 

concentrations in Tris buffer. 

2.2.2 Data Acquisition and Analysis 

In order to construct carbon-fiber microelectrodes, a single carbon fiber of 3 

µm radius (T-650, Thornel, Amoco Co.) was aspirated into a glass capillary (0.6 

mm external diameter, 0.4 mm internal diameter, A-M Systems, Inc., Sequim, 
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WA). The glass was tapered to form a carbon-glass seal with a micropipette 

puller (Narishige, Tokyo, Japan). The exposed carbon fiber was cut to 

approximately 150 µm in length under a microscope. Customized software, TH-1 

(ESA, Chelmsford, MA) written in LABVIEW (National Instruments, Austin, TX) 

was used for waveform generation and data acquisition. A custom-built UEI 

potentiostat (University of North Carolina at Chapel Hill, Department of Chemistry 

Electronics Facility) was employed. Signal processing (background subtraction, 

signal averaging, and digital filtering (4-pole Bessel Filter, 5 kHz)) was performed 

in TH-1 software.  

2.2.3 Flow Injection Analysis 

The carbon-fiber microelectrode was placed in a modified HPLC union (Elbow, 

PEEK 3432, IDEX, Middleboro, MA) and in the output of a manual six-port HPLC 

loop injector valve (VICI, 6223186, Houston, Texas). The apparatus enabled the 

introduction of a pulse of analyte to the microelectrode surface using a syringe 

infusion pump (Harvard Apparatus model 940, Hollison, MA) at a flow rate of 2 

mL min-1. In optimizing the system, longer sample loops were used to establish 

the maximum delivery of analyte to the electrode; the length of the loop was 

subsequently reduced to provide the maximum signal with the shortest loop 

length.  

2.2.4 SEM-EDS 

Scanning electron microscopy and energy dispersive x-ray spectroscopy 

(SEM-EDS) were performed on a Jeol JSM-6510LV/LGS Scanning Electron 

Microscope (Peabody, MA). SEM images were collected under high vacuum, 
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using an excitation voltage of 25 kV and Au sample sputtering. EDS data were 

collected using a SDD detector. EDS spectra were collected at three distinct 

locations on each electrode and the values for atomic % Copper were averaged. 

2.3 Results and Discussion 

Our method is based on fast-scan cyclic voltammetry (FSCV) at carbon-fiber 

microelectrodes (CFM). FSCV has largely been developed for biological 

applications76,77 and employs scan rates between 400 and 1000 V s-1. The time 

to acquire one cyclic voltammogram is approximately 20 ms. A large charging 

current can be eliminated by background subtraction when cyclic 

voltammograms are collected in quick succession (every 100 ms).78 We now 

apply this technique, which we refer to as fast-scan deposition-stripping 

voltammetry (FSDSV), to detect Cu(II) in real-time. 

2.3.1 FSCV Characterization for Cu(II) 

Deposition-stripping voltammograms (DSVs) collected every 100 ms serve 

two important purposes, identification and quantification, illustrated in Figure 2.1. 

Here DSVs were collected for 30 s during a flow injection analysis (FIA) of Cu(II) 

(10 µM) onto a CFM. The potential of the CFM was initially swept in the negative 

direction from 0 to −1.0 V and then subsequently reversed to +1.0 V at a scan 

rate of 400 V s−1. The middle panel of Figure 2.1 provides a representation of all 

of the background-subtracted DSVs. The interpretation of this color plot is 

described in detail elsewhere.79 Cu(II) was injected at the time point indicated by 

the star. 
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Figure 2.1. (A) DSVs (i vs v) taken and reconstructed from the white vertical 
dashed line in part B. (B) Color plot with potential on the y-axis plotted 
against time on the x-axis and the current response represented in false color. 
Cu(II) (10 µM) is injected at the time indicated by the black vertical dashed 
line and star. (C) i vs time from the horizontal white dashed line at peak 
reduction potential. (D) [Cu(II)] obtained by taking the reverse of part C and 
standard calibrations. 

Figure 2.1.A is one DSV taken during the Cu(II) injection, indicated by the 

vertical white dashed line. Peaks corresponding to deposition (−0.6 V) and 

stripping (0.5 V) are visible as reduction and oxidation peaks. Figure 2.1.C is the 

current taken at the maximum reduction potential for each DSV plotted with time. 
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Because we are measuring Cu(II) reduction, the current is in the negative 

direction; however, the signal corresponds to an increase in [Cu(II)]. Figure 2.1.C 

can be converted to [Cu(II)] first with standard calibrations and then via reversal 

of the current direction. This analysis now represents the sub-second 

measurement of [Cu(II)] and is shown in Figure 2.1.D. FSCV at CFM has been 

found to be highly sensitive for neurotransmitters,80 and we found the same for 

Cu(II), in this example 28.7 nA was obtained for a 10 µM Cu(II) injection. 

Hemispherical diffusion of the analyte to the CFM surface creates increased 

mass transport hence increased response. In addition, Faradic current is 

proportional to the scan rate for absorbed species and again results in an 

increased response. Moreover, the increased convection effects of flow injection 

analysis can contribute to an increased signal.  

2.3.2 Copper at Carbon-fiber Microelectrodes 

In classical ASV, the magnitude of the stripping peak is used for quantification; 

this is because it is not feasible to quantify deposition due to the pre-

concentration that lasts several minutes. The length of our negative sweep is 

around 2.5 ms, therefore it is possible to acquire a well-defined deposition peak. 

This peak is advantageous for two reasons. First, the deposition peak has a 

higher magnitude than the stripping peak, presumably due to kinetics (with an 

optimized waveform described below, deposition and stripping have magnitudes 

of 55.8 ± 0.96 nA and 18.0 ± 0.39 nA, respectively (n = 50 ± standard error of the 

mean)); hence, employing the deposition peak for quantification improves 

sensitivity. Second, this technique has two characteristic voltages by which to 
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identify a process. Our future focus is to characterize multiple metals in 

environmental samples simultaneously. Therefore having both peaks will be 

particularly important for distinguishing between them.  

To analyze multiple metals with both deposition and stripping peaks, it is 

essential that deposition is stable over multiple readings in the absence of Hg. To 

establish whether this holds for CFMs, we tested the reproducibility of Cu(s) 

electro-deposition on CFMs. We applied −1.4 V to the CFM for 0, 1, 5, and 10 

min in a solution of Cu(II) (100 µM) and assessed the electrode surface with 

scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy 

(EDS). There is a proportional relationship between the deposition time and % 

Cu(s) as shown in Figure 2.2.A; a visual confirmation of this relationship is 

observed in the representative scanning electron micrographs (SEMs) for each 

time group. Here, the SEMs clearly show presence of Cu(s) clusters on the 

carbon-fiber striations even after 1 min. Trace levels of Cu(s) at 0 min can be 

attributed to the sample holder material of the instrument. After 1 min, the surface 

Cu(s) was 1.2 ± 0.2%; after 5 min, 3.2 ± 0.4%; after 10 min, 6.9 ± 1.1%. This 

shows that we can control the deposition process, an indication of its high 

stability.  

To further validate the stability of deposition, we used an optimized waveform 

(−1.4 to 1.3 V at 600 V s

  

with a resting potential of 0 V, as described below), we 

repeatedly injected Cu(II) (10 µM) onto a CFM (50 times), and we recorded the 

peak reduction current each time. The magnitude of the current observed is 

plotted against injection number in Figure 2.2.B. The response is 55.2 ± 2.1 
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(standard deviation) ± 0.29 (standard error of the mean) nA (n = 50). The low 

standard deviation and standard error confirm that this is a stable process. The 

DSVs exhibited a robust deposition/stripping peak ratio of 3.1 ± 0.03 (n = 50 ± 

standard error of the mean). Again, the low standard error indicates that 

deposition is as stable as oxidation, a further index of its high stability.  

 

Figure 2.2. (A) Histogram showing % surface Cu(s) vs deposition time (0, 1, 5, 
and 10 min) (n = 3 ± standard error of the mean). Representative SEMs, 
taken at 8000× magnification for each group are displayed under each 
histogram block. (B) Peak reduction current of successive Cu(II) (10 µM) 
injections onto a CFM with FIA. (Positive potential limit +1.3 V, negative 
potential limit −1.4 V, resting potential 0 V, scan rate 600 V s−1). Horizontal 
lines indicate SD limits. 
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2.3.3 Waveform Optimization for Cu(II) 

Cu(II) reduction is described below:  

Cu(II) + 2e− → Cu(s)    E° = 0.34 V vs. SHE 

We initially chose waveform parameters that are well established in FSCV.

 

We observed Cu(s) deposition over −0.3 to −0.8 V. The discrepancy may be due 

to the difference in reference material (SHE vs Ag/AgCl). Another possibility is an 

iR drop due to slow electron transfer kinetics at high scan rates, during the 

deposition scan that creates a wide peak separation. The mechanism of this 

process is a focus of our ongoing studies. With this waveform, the response to 

Cu(II) (10 µM) is 33.9 ± 4.1 nA (n = 4 ± standard error of the mean).  

We varied our waveform parameters to optimize sensitivity to Cu(II). Figure 

2.3.A shows the averaged current response to Cu(II) (10 µM) when the positive 

and negative potential limits were varied (n = 4). Each point on the topograph in 

Figure 2.3.A shows the current response at a particular combination of the 

positive and negative limits. The current is modestly augmented with increasing 

negative potential; we postulate that this is due to maximized Cu(II) adsorption. 

There is a more defined trend with an increasing positive limit, with two clear 

“breaks”. First, there is a drop-off at around 0.8 V. This may be due to incomplete 

stripping, which would reduce the surface available for deposition on subsequent 

scans. Second, there is an exponential increase after 1.2 V. This has previously 

been observed for neurotransmitters and is due to overoxidation of the carbon 

surface. The overoxidation process renders the surface more sensitive due to 

increased absorption to catalytic oxygen groups80

 

and regeneration of the carbon 
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surface with each scan.81

  

Therefore, we set the optimal potential limits to −1.4 to 

1.3 V vs Ag/AgCl. However, we found that the response to Cu(II) (10 µM) at 1.3 

V, 53.2 ± 10.9 nA (n = 4 ± standard error of the mean), was variable. The metal 

has a complex interaction with the carbon surface under these conditions; we are 

currently studying the surface catalysis at 1.3 V to better understand this.  

In Figure 2.3.B we varied the resting potential from −0.6 to 0.6 V. We found 

that the optimal resting potential was 0 V (for 10 µM, 36.1 ± 2.0 nA, n = 4 ± 

standard error of the mean) with two different slopes governing the drop-off in the 

positive and negative directions. When the rest potential is held at positive 

potentials, Cu(II) is correspondingly repelled. FSDSV only detects differential 

responses; therefore, when scanning negatively, there will be a background 

Faradaic current arising from the deposition that will effectively be subtracted out, 

manifesting itself as a reduction in signal.  

Finally, we varied the scan rate from 100 to 1200 V s-1. There is a linear 

relationship between scan rate and current up to 1000 V s-1

 

(Figure 2.3.C). The 

slope of log current vs log scan rate is 0.9, close to 1, confirming adsorption 

driven electro-chemistry. At 1200 V s−1 the current is reduced, possibly because 

of a temporal limitation for deposition (time for the negative sweep at this scan 

rate is less than 1 ms). At 1000 V s-1, the peak separation was significant enough 

to cause inconsistencies in the shapes of the DSVs. At 600 V s-1, there were still 

advantageous current gains, but the shapes of the DSVs were consistent. 

Therefore, we chose 600 V s-1

 

as our optimal scan rate. Here the current 

response to 10 µM was 48.7 ± 5.1 nA (n = 4 ± standard error of the mean) and 
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the limit of detection was 250 nM or 15.8 ppb. Therefore, we present a unique, 

optimized waveform for online Cu(II) detection, −1.4 to 1.3 V at 600 V s

 

with a 

resting potential of 0 V.  

 

Figure 2.3. (A) 3-D representation of peak reduction current of background-
subtracted in vitro DSVs of Cu(II) (10 µM) vs positive potential limit (x-axis) 
and negative potential limit (z-axis) (n = 4).(Resting potential 0 V, scan rate 
400 V s−1). (B) Variation in peak reduction current when resting potential is 
varied (n = 4 ± standard error of the mean). (Positive potential limit +1.3 V, 
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negative potential limit −1.4 V, scan rate 400 V s−1). (C) Variation in peak 
reduction current when the scan rate is varied (n = 4 ± standard error of the 
mean). (Positive potential limit +1.3 V, negative potential limit −1.4 V, resting 
potential 0 V). (D) Standard calibrations (n = 4 ± standard error of the mean). 
(Positive potential limit +1.3 V, negative potential limit −1.4 V, resting potential 
0 V, scan rate 600 V s−1). 

Standard calibrations with this waveform are presented in Figure 2.3.D (n = 4 

± standard error of the mean). A linear calibration range up to 5 µM or 318 ppb is 

suitable for environmental Cu(II) analyses, the sensitivity (slope) in this range is 

4.9 nA µM

 

or 0.077 nA ppb.  

2.3.4 Speciation Study 

The strength of our technique is its time resolution because it is critical for 

studying speciation, and we demonstrate this in Figure 2.4.B. Here, the CFM 

was immersed into a well-stirred 20 mL of 200 mM Cu(NO3)2 solution. We 

injected 1 mL of 1mM ethylenediaminetetraacetic acid (EDTA) at the time point 

indicated by the star and this created an immediate change. The DSV taken at 

the vertical white dashed line shows the reverse DSV of Cu(II) indicating that the 

concentration of Cu(II) decreased (Figure 2.4.A). The identity of Cu(II) was 

verified by the close agreement of peak positions in the inset of Figure 2.4.A. 

Here, the current of the experimental DSV (black solid) was reversed and 

superimposed onto an DSV of Cu(II) (10 µM) collected in vitro (dashed), both 

were normalized to the maximum negative current. In Figure 2.4.C, the 

maximum deposition current (reversed) decreased with time reaching a new level 

indicating less free Cu(II). This is a novel subsecond electrochemical 

measurement of the Cu(II) binding process by EDTA. We repeated this 

experiment with four different electrodes and found similar results.  
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Figure 2.4. (A) DSVs (i vs v) taken and reconstructed from the white vertical 
dashed line in part B. Inset: DSV of Cu(II) (10 µM) taken by FIA (dashed) 
superimposed on the reverse current DSV taken from white vertical dashed 
line in part B. (B) Color plot with potential on the y-axis plotted against time 
on the x-axis, and the current response represented in false color. CFM is 
immersed into a well stirred solution of Cu(II) (20 mL of 200 µM). EDTA (1 mL 
of 1 mM) is injected at the time indicated by the black vertical dashed line and 
star.(C) [Cu(II)] vs time taken and reversed from the horizontal white dashed 
line at peak reduction potential. 

Quantitative measurements of Cu-EDTA complexation are routinely 

performed during titrations, where specific points are monitored at equilibrium. 

The slope in Figure 2.4.C represents the magnitude of Cu(II) bound with time or 

the rate at which EDTA binds Cu(II). This real-time kinetic information is 

fundamentally novel with electrochemical techniques. Such information is 
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dependent on a complex variety of information about the system, including 

temperature, flow, pH, ionic strength, and complexation. These can now be 

studied using well-established models for Cu(II) speciation. Real environmental 

samples contain a variety of electroactive interferences; therefore, we are 

currently identifying and characterizing these substances in order to separate out 

specific effects of interest.  

2.4 Conclusion 

In conclusion, studying metal speciation is essential for mitigating the impact 

of metals in environmental systems. However field technology that provides real-

time information on metal speciation has been limited. While portable and low 

cost, electrochemical techniques have traditionally been limited by their temporal 

resolution and necessity for Hg. In this chapter, we reported a novel Hg-free 

technique, FSDSV at CFMs, to perform electrochemical measurements of Cu(II) 

every 100 ms, without toxicity concerns. We anticipate that our technology will 

open new frontiers for studying speciation, advancing our ability to reduce the 

environmental impact of metals.  
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CHAPTER 3. REAL-TIME SUBSECOND VOLTAMMETRIC 
ANALYSIS OF LEAD(II) IN AQUEOUS ENVIRONMENTAL 

SAMPLES 
 

Lead (Pb) pollution is an important environmental and public health concern. 

Rapid Pb transport during stormwater runoff significantly impairs surface water 

quality. The ability to characterize and model Pb transport during these events is 

critical to mitigating its impact on the environment. However, Pb analysis is 

limited by the lack of analytical methods that can afford rapid, sensitive 

measurements in situ. In this chapter, we describe two novel methodological 

advances that bypass the limitations of conventional electrochemical methods. 

Using geochemical models, we firstly created an environmentally relevant test 

solution that can be used for electrochemical method development and 

characterization. We secondly developed a fast-scan cyclic voltammetry (FSCV) 

method for Pb detection on Hg-free carbon fiber microelectrodes. We assessed 

the method’s sensitivity and stability, taking into account Pb speciation, and 

utilized it to characterize rapid Pb fluctuations in real environmental samples. We 

thus present a novel real-time electrochemical tool for Pb analysis in both model 

and authentic environmental solutions. 

 

Yang, Y., Pathirathna, P., Siriwardhane, T., McElmurry, S. P., Hashemi, P. Anal. 

Chem. 2013, 85(15): 7535-7541. Reprinted with permission from Copyright (2013) 

American Chemical Society.  
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3.1 Introduction 

Lead (Pb) is a toxic pollutant commonly found in post-industrial urban 

watersheds because of its historical use in paints and automotive gasoline and 

batteries.82,83 Despite efforts to reduce Pb loadings to the environment, Pb 

exposure continues to be of great concern to public health. In particular, there is 

increasing evidence that children exposed to Pb, even at levels previously 

considered safe, have a high risk for developing adverse neurological and 

systemic health problems.84 These concerns, in addition to newly recognized 

exposure paradigms85 have created a critical interest in better defining Pb cycling 

in the environment.  

One of the most significant transport processes in urban systems is 

stormwater runoff. Urban stormwater is the primary source of water quality 

impairments for 13% of all rivers, 18% of all lakes, and 32% of all estuaries in the 

United States, despite urban land use constituting only 3% of the land cover.86 

The discharge of metals in stormwater is one of the primary causes for these 

water quality impairments.87 In order to prevent the damaging environmental 

effects of Pb, it is vital to understand the mechanisms of Pb transport during 

environmental events such as stormwater runoff where solution chemistry is 

often in disequilibrium.88 To understand Pb transport, it is necessary to quantify 

the interactions of Pb with organic ligands and soils dynamically because these 

reactions have rapid kinetics.89,90 The lack of analytical methods that can 

continuously monitor Pb in situ with high time-resolution has traditionally limited 

this goal.  
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While spectroscopy provides highly sensitive and selective metals 

measurements, on-site analysis is difficult due to limited portability of the 

instruments. Moreover, sample collection and preparation do not allow in situ 

analysis. Electrochemistry has shown promise for such measurements,91-93 

because electrochemical reactions occur at a submersible surface. However, 

concerns about stability, Hg-electrode toxicity and low temporal resolution have 

severely limited the application of electrochemistry to environmental analyses. 

We recently described the application of fast-scan cyclic voltammetry (FSCV) 

to real-time, sub-second Cu detection.94 Our method is fast, robust and Hg-free. 

In this work, we applied a similar approach to Pb characterization. We faced two 

discrete challenges for experimental FSCV analysis. First, aqueous systems 

were not available to analyze Pb under conditions that are representative of real 

natural water systems like those in which we ultimately seek to understand Pb’s 

behavior. Due to Pb’s limited aqueous solubility, other researchers performing Pb 

electrochemistry have traditionally utilized test solutions (buffers) at low pH95-97 or 

in acetate98-100 or nitrate rich buffers101-103. While such solutions allow 

electrochemical characterizations, they are not ideal for environmental 

characterizations. Second, in our prior work, we established a Cu specific 

electrochemical FSCV waveform94 but here we discovered that this waveform 

was not suitable for Pb detection. In this paper, we describe methods to 

overcome both challenges. 

We employed PHREEQCi software to develop a model test solution that 

mimics stormwater runoff, which we then optimized for electrochemical analysis. 
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We subsequently optimized a Pb-specific FSCV waveform with high sensitivity 

and temporal resolution. Finally, we analyzed real stormwater samples spiked 

with Pb and were able to detect rapidly fluctuating Pb concentrations with the 

same voltammetric profile as our model solution.  

We therefore present a novel experimental method for rapid Pb analysis. We 

created this system to best mimic stormwater runoff, while retaining sufficient 

ionic composition required for FSCV analysis. Our novel system will allow 

researchers to investigate Pb chemistry, kinetics and transport in model and real 

environmental systems. 

3.2 Materials and Methods 

3.2.1 Solutions 

Stock Pb2+ solutions were prepared by dissolving Pb(NO3)2 (Mallinckrodt 

Baker Inc, Japan) into different buffer solutions. Tris-buffer ingredients (15 mM 

H2NC(CH2)OH)3·HCl, 140 mM NaCl, 3.25 mM KCl,1.2 mM CaCl2, 1.25 mM 

NaH2PO4·H2O, 1.2 mM MgCl2 and 2.0 mM Na2SO4 with the pH adjusted to 7.4) 

were purchased from EMD Chemicals Inc, USA. The composition of our model 

solutions were based on the geometric mean concentration of major ions 

observed in stormwaters, as described in the International Stormwater BMP 

Database 104: 1.2mM HCO3
-, 230mM Ca2+, 33mM Mg2+, 20mM K+, 25mM NO3

-, 

and 80mM SO4
2-. Final solutions were further optimized based on the 

PHREEQCi modeling results. The Version 1 (V1) model surface water solution 

was 0.23 mM NaHCO3, 0.16 mM CaSO4, 2.2 mM MgCl2, 0.062 mM KCl, 0.036 

mM KNO3, and 0.013 mM Na2HPO4 at pH 7.0. The Version 2 (V2) model surface 
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water solution was 0.0012 mM NaHCO3, 0.23 mM CaCl2, 0.033 mM MgCl2, 

0.020 mM KCl, 0.025 mM KNO3, 4.0mM NaCl, and 0.080mM Na2SO4 at pH 6.5. 

All aqueous solutions were made with deionized water. 

3.2.2 Stormwater Collection 

We collected stormwater samples during a 30 minute runoff event on Dec. 4, 

2012 that deposited 0.2 inches of rain over a 45 acre paved parking area in 

southeast Michigan. Samples were collected in pre-cleaned 1L bottles using a 

Sigma SD9000 All Weather-Refrigerated Sampler. Sample bottles were cleaned 

with soap - phosphate free detergent (e.g., Liqui-Nox® soap) – and water, rinsed 

nanopure water (>18MΩ), rinsed with 37% trace-metal grade HCl and triple 

rinsed with nanopure water. Samples were refrigerated (4 ± 1°C) until they were 

transported in a dark cooler on ice to the laboratory where they were filtered 

through a 0.45µm pore size AquaPrep™ filter within 6 hours. After filtering no 

additional alterations where made to the sample and they were stored 

refrigerated (4 ± 1°C) in the dark. From these discrete samples, one of the 

samples collected at approximately peak flow of the runoff event was selected for 

voltammetric experiments.  

3.2.3 Carbon-Fiber Microelectrodes 

Carbon-fiber microelectrodes were fabricated using 7µm radius carbon-fibers 

(Goodfellow Corporation, USA) vacuum-aspirated into a glass capillary (0.6 mm 

external diameter, 0.4 mm internal diameter, A-M Systems, Inc., Sequim, WA) 

and pulled with a vertical micropipette puller (Narishige, Tokyo, Japan) to form a 
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carbon-glass seal. The exposed length of the carbon fiber was trimmed to 150 

µm under an optical microscope.  

3.2.4 Data Acquisition 

All electrochemical experiments employed a custom-built instrument for 

potential application to the electrochemical cell and current transduction 

(University of North Carolina at Chapel Hill, Department of Chemistry Electronics 

Facility). Output of waveform, data acquisition, and signal processing 

(background subtraction, signal averaging, and digital filtering) were achieved 

using a customized version of TH-1 software (ESA, Chelmsford, MA) written in 

LabVIEW (National Instruments, Austin, TX). All potential values are quoted with 

respect to Ag/AgCl, which was constructed by electroplating Cl- onto silver wire 

(A-M systems, WA, USA) (Ag wire was immersed in 1 M HCl and held at + 13 V 

vs. W for 5 seconds). 

3.2.5 Data Analysis 

Custom-built software, written in LabVIEW 2009, was used for background 

subtraction, data analysis and signal processing. Pooled data is presented with 

errors signified by the standard error of the mean (SEM). Student’s t-tests were 

performed on paired data sets, p < 0.05 was taken as significant and signified 

with a star. 

3.2.6 Flow Injection Analysis 

The carbon-fiber microelectrode was inserted into a flangeless short 1/8 nut 

(PEEK P-335, IDEX, Middleboro, MA), and fastened to a modified HPLC union 

(Elbow, PEEK 3432, IDEX, Middleboro, MA) in the output of the flow injection 
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apparatus. The apparatus consisted of a six-port HPLC loop injector affixed to a 

two-position actuator (Rheodyne model 7010 valve and 5701 actuator) and a 

syringe infusion pump (kd Scientific, model KDS-410, Holliston, MA). A 

rectangular pulse of analyte was introduced to the carbon-fiber microelectrode 

surface at a flow rate of 2 mL min-1. For calibrations and waveform optimization, 

standards were injected randomly instead of sequentially to avoid carry-over 

effects. 

3.2.7 PHREEQCi 

Solution chemistry was modeled in PHREEQCi (available for free download 

at http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqci/). PHREEQCi is a 

geochemical modeling software capable of determining speciation based on 

thermodynamic equilibrium.105 Chemical reactions used for this determination 

were supplied by the MINTEQ.v4 database developed by the U.S. Environmental 

Protection Agency.106 Solutions were modeled in equilibrium with CO2(g) (10-4.8 

atm)  and O2(g) (10-0.67 atm). The pH of our solutions was within 0.05 pH units of 

that predicted by the PHREEQCi model. 

3.3 Results and Disscusion 

3.3.1 Fast Voltammetric Detection of Metals  

Electrochemistry has been employed as an important tool for metals detection 

since Heyrovsky brought polarography to popularity in the 1920s.107 The most 

popular polarographic method for metals analysis is anodic stripping voltammetry 

(ASV). The fundamental principle here is that the potential on a Hg droplet is held 

at a negative value so that metal ions in solution electrodeposit within the Hg 
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matrix, creating an amalgam. If this process is given enough time, it can serve as 

a powerful preconcentrator of the metal ions on the electrode surface. Thus, 

when the potential is ramped in the positive direction, the deposited metal is 

‘stripped’ off the electrode surface, providing high currents relative to the metal 

concentration. ASV is an important method for laboratory analysis, however, 

concerns about Hg toxicity and the portability of the polarographic set-up has 

severely limited the application of ASV for environmental analyses. As such, 

researchers have explored a variety of safe materials, along with modifications to 

voltammetric methods in order to create devices more suited to monitor the 

environment. Amongst these, the bismuth film electrode (BFE) is particularly 

popular.108-110 The BFE forms “fused alloys” with metal ions, analogous to the 

formation of an amalgam. Negligible toxicity is its main advantage, however, the 

BFE is limited by a narrow anodic range that makes it impossible to detect metal 

ions with oxidation potentials more positive than Bi (e.g., Cu, Sn and Sb).111  

New materials can improve the applicability of stripping methods for 

environmental studies, however another ongoing challenge is to improve 

temporal resolution. This challenge is particularly pertinent during stormwater 

runoff events where is it important to understand the fate and transport of Pb 

(e.g., kinetics of metal-organic interactions).112 Ion-selective electrodes, 

measuring potential changes due to partition of Pb ions into a selective 

membrane, have improved temporal resolution.113-115 However, their response 

time is still > 20 seconds, and issues with stability and sensitivity create 

additional challenges for environmental analyses.  
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We recently described a fast method for Cu detection on carbon fiber 

microelectrodes (CFM).94 Our method utilizes the adsorptive capacities of carbon 

fiber surfaces to rapidly preconcentrate metal ions onto the electrode surface 

prior to a fast cyclic voltammetric scan. For Cu, a preconcentration time of 100 

ms resulted in ppb (parts per billion) sensitivity.94 This method is fast, selective 

and Hg-free, critical ingredients for a potential environmental analytical tool. 

Using flow injection analysis (FIA), we studied the response of our method to 

Pb2+ with our previously established Cu specific waveform.94 FIA provides 

reproducible and rapid pulses of analytes to the electrode surface, making it an 

ideal tool to probe dynamic metal chemistry.  The potential was initially ramped in 

the negative direction from 0 to -1.4 V and then in the positive direction to 1.3 V 

and finally back to 0 V resting potential. Figure 3.1.A shows an injection of Cu2+ 

(10 µM Cu(NO3)2) onto a CFM. The color plot is constructed by stacking 

background-subtracted cyclic voltammograms (CVs) (y-axis) with time (x-axis) 

and assigning false color to current changes (z-axis). The start and end of the 

injection are denoted by the dashed black lines. As we previously found, the 

voltammetric signature during the injection identifies Cu2+ based on the position 

of the initial reduction and subsequent oxidation peak taken from a cyclic 

voltammogram (CV) (inset) during the injection indicated by the white dashed line. 

In Figure 3.1.B, we performed the identical experiment for an injection of Pb2+ 

(10 µM Pb(NO3)2). Here we encountered two problems. First, Pb2+ has limited 

solubility in Tris buffer and, as such, our standard solutions visibly displayed high 

levels of precipitation. Second, the Pb2+
(aq) in this solution did not give rise to a 
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redox-recognizable process as evidenced by the lack of an oxidation peak (inset 

CV). This observation was not surprising since Pb2+ is larger than Cu2+ and 

necessarily has different absorption and reaction kinetics. This experiment shows 

that different metals demand unique FSCV waveforms, optimized for their kinetic 

characteristics. We can employ different FSCV waveforms to provide enhanced 

selectivity for individual metals. Selectivity can be further improved by using 

ionophores to preconcentrate metals on the electrode surface prior to the 

voltammetric scan. This is currently one of our research objectives.  

 

Figure 3.1. Color plots with potential on the y-axis plotted against time on the 
x-axis and the current response represented in false color. In A, Cu2+ (10 µM) 
was flow injected onto a carbon fiber microelectrode and in B, Pb2+ (10 µM) 
was injected. Insets show cyclic voltammograms taken at the vertical white 
dashed line. 
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In the following sections, we optimize the test solution to create stability for Pb 

and create an FSCV waveform for discrete Pb detection. 

3.3.2 Model Surface Water Solution for Pb Electrochemistry 

Previously, when establishing a Cu2+ specific waveform, we utilized a Tris 

buffer test solution because the majority of FSCV characterizations are carried 

out in this buffer system.77,116 However metals in natural waters exhibit 

considerably different speciation than under laboratory conditions. Pb has limited 

solubility and readily forms carbonate and hydroxy complexes with common 

buffers.117 This reactivity makes it difficult to utilize standard laboratory buffer 

systems for Pb analysis. As such, researchers have traditionally used test 

solutions at low pH95-97 and with compositions that are not environmentally 

relevant.99-103,118. Furthermore, it is difficult to compare data between different 

test solutions because the concentration of free Pb2+ can vary due to differences 

in complexation. Therefore it is important to establish an environmentally relevant 

model test solution for Pb analysis that can also facilitate electrochemical 

measurements.  

We first created a solution based on the ionic composition of stormwater 

typical of northern climates where road salt is used.119. This solution, V1, was at 

pH 7 with an ionic strength of 4.0 x 10-3 M. When Pb2+ was added to this solution 

to make a standard concentration of 100 µM, we found that the solution was 

unstable (Figure 3.2). With a relevant waveform (we describe full optimization in 

the next section), the Pb2+ standard was successively flow injected onto a CFM. 

In Figure 3.2, the maximum reduction current response to the injection was 
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plotted with injection number in the blue trace. It is clear that the electrode 

response decreases with increasing injection number. We have previously shown 

that FSCV responses to metals are stable with repeated injections,94 therefore 

this decrease in signal is indicative of solution instability. To further validate this 

hypothesis, test solutions were left overnight, resulting in formation of a white 

precipitate. After filtering out the precipitate, the FSCV response was no longer 

detectable, suggesting that the concentration of free Pb2+ was dramatically 

reduced in solution due to precipitate formation. This speculation was confirmed 

with a PHREEQCi model. The thermodynamic equilibrium described by 

PHREEQCi predicted that Pb would precipitate as cerrusite (PbCO3) for solutions 

with this composition and pH until it reached a concentration of 2.6 µM, currently 

below our detection limit.  

 

Figure 3.2. Maximum reduction current to successive flow injections of Pb2+ in 
solutions V1 (blue) and V2 (red). Error bars are ± SEM (standard error the mean). 
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To minimize cerrusite formation, we reduced the concentration of bicarbonate, 

decreased the pH to 6.5, and eliminated phosphate from solution. The ionic 

strength was similar at 5.3 x 10-3 M (compared to 4.0 x 10-3 M). This solution, V2, 

displayed increased stability. The red trace in Figure 3.2 shows successive 

injections of Pb2+ onto the CFM with no loss in response. When this solution was 

left overnight, no precipitates formed. This result was further verified in 

PHREEQCi, which predicted that this solution should be at equilibrium. 

Taken together, these results constitute the first report of a stable solution 

closely mimicking stormwater composition suitable for Pb electrochemical 

analysis. Importantly, this solution resembles the reported make-up of authentic 

stormwater samples submitted to the International Stormwater BMP database,104 

making it an ideal test solution for environmental analyses. Moreover, the 

solution has sufficient ionic and buffer capacity to enable accurate fundamental 

electrochemical characterizations with FSCV. 

3.3.3 Optimization of a Voltammetric Waveform for Pb Detection  

In Figure 3.1, we showed that our Cu2+ specific FSCV waveform was not 

suitable for Pb2+ detection. Because the ionic radius of Pb2+ is larger than that of 

Cu2+, we expect differences in the FSCV kinetics between the two, thus we 

expected Pb2+ to require different electrochemical detection parameters. To 

create a unique waveform for Pb2+ detection with a robust redox signature, we 

systematically altered the electrochemical potential limits, the resting potential, 

and the scan rate. Figure 3.3 shows the results of this optimization (100 µM 

Pb2+). The initial cathodic scan induces Pb2+ reduction, therefore we increased 
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the reduction potential window by increasing the resting potential, as shown in 

Figure 3.3.A. We found that, as we increased the potential window, the peak 

reduction current increased, and we were able to capture redox processes on 

both cathodic and anodic scans. When we increased the positive potential above 

0.2 V, we found increased peak separation between the oxidation and reduction 

peaks. We therefore chose 0.2 V as the ideal resting potential. Here the 

reduction current was 34.4 ± 2.6 nA (n = 4 ± SEM).  

 

Figure 3.3. Results of waveform optimization. The optimized waveform is shown 
in blue. A shows resting potential dependence on i at - 0.8 – +0.8 V, with a scan 
rate of 400 V s-1. B shows potential limit dependence. B(i) shows values of i for 
combinations of positive and negative potential limit when the negative potential 
limit is plotted on the x-axis. B(ii) shows values of i for combinations of positive 
and negative potential limit when the positive potential limit is plotted on the x-
axis. C shows scan rate dependence on i at - 0.8 – +0.8 V, with a rest potential of 
0.2 V. 
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Figure 3.3.B illustrates the effects of varying positive and negative potential 

limits. Figure 3.3.B(i) displays values of peak reduction current for combinations 

of positive and negative potential limit when the negative potential limit is plotted 

on the x-axis while Figure 3.3.B(ii) shows the same when the positive potential 

limit is plotted on the x-axis. There was not a strong trend when we increased the 

negative potential window. In Figure S3.1.A in Appendix A the current at -0.6 V 

was statistically compared to the current at -1.2 V for every positive potential 

studied. Only one of the series showed a significant trend. At very low negative 

potentials (< -1.0 V), O2 reduction can be observed on CFMs;120,121 given that O2 

levels are likely to fluctuate in environmental systems, we chose -0.8 V as our 

negative potential limit. As the positive potential was increased, there was a 

significant increase in the signal.  

In Figure S3.1.B in Appendix A, the current at 0.7 V was statistically 

compared to the current at 1.3 V for every negative potential studied. All but one 

of the series showed a significant trend due to over-oxidation of the carbon fiber 

microelectrode surface as described previously.116,122 Although the response 

increased with increasing positive potential limit, at high positive potential limits, 

oxidation and reduction peaks were undefined and indicated kinetic limitations. 

We therefore determined that a positive potential limit of +0.8 V would yield high 

sensitivity and discrete redox peaks.  

Finally, we confirmed scan rate dependence on current by varying the scan 

rate from 200 – 1200 V s-1. We found a positive correlation with increasing scan 
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rate, however, the IR drop created by high scan rates increased peak separation 

and distorted the CVs. We therefore chose 400 Vs-1 as the optimal scan rate.  

Our optimal waveform, shown in Figure 3.3, is -0.8 – +0.8 V, resting at 0.2 V, 

and with a scan rate of 400 Vs-1. With this waveform sensitivity to Pb2+ is 0.17 nA 

µM-1 or 0.84 nA ppm-1, the limit of detection (LOD) is 10 µM or 2.1 ppm and the 

linear calibration range is up to 350 µM or 73 ppm. 

3.3.4 Optimized Pb Detection Model  

We combined our model test solution with our Pb-optimized waveform in 

order to create a novel Pb analysis method. Figure 3.4 shows an FIA experiment 

where our test solution was used as the flow injection solvent and Pb2+ (100 µM) 

was injected into the flow stream onto a CFM. The color plot (middle panel) 

shows electrochemical events after injection and the CV (top panel, extracted 

from the vertical dashed line) verifies a robust redox process with defined 

reduction and oxidation peaks at -0.35 and +0.2 V respectively. Pb2+ 

perturbations on an environmentally relevant temporal scale can be established 

by extracting i vs. t at the peak reduction current (horizontal white dashed line). 

When compared to calibrations, these data can be turned into [Pb] vs. time as 

previously described;94 shown in the bottom panel. The entirety of this event lasts 

30 seconds. 
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Figure 3.4. A flow injection analysis response to Pb2+ with optimized test 
solution and waveform. A shows a CV taken at the vertical white dashed line 
from the color plot in B. C shows a plot of [Pb2+] vs. time, which was 
determined by taking i vs. t from the horizontal white dashed line in the color 
plot. The i vs. t trace was reversed to create a positive value (as described in 
ref 94) and represents 100 µM Pb2+. 

Standard Pb calibrations are shown in Figure 3.5. Typically calibrations for 

electrochemical analyses utilize acidified solutions, which maximize free 

Pb2+.98,123 In acidic solutions, the [Pb2+] can be considered the same as the total 

[Pb]. However in natural systems, complexation with ligands can reduce [Pb2+]. If 

not taken into account, this will result in inaccurate concentration measurements.  
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Figure 3.5. A shows the PHREEQCi models predicting the speciation of Pb 
in terms of the % fraction of Pb in various forms. This speciation information 
is for Pb in the calibration standards used to construct the calibration curves 
in B. The blue calibration trace shows total [Pb] in solution while the red trace 
shows the free Pb2+ in solution. 

 

Figure 3.5.A shows the speciation of Pb in each of the calibration standards 

modeled with PHREEQCi. Our calibration standards ranged in concentration 

from 10 to 1000 µM Pb. Due to solution composition, the pH of our standards 

decreased with increasing total [Pb]. When considering speciation, this ∆pH 

impacts complexation, in particular with respect to Pb-OH complexes. As a result, 

the relative fraction of Pb associated with hydroxides decreased with increased 
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total Pb, a trend that can be seen by the reduction in the green section of the 

histogram. Therefore, not only is there a difference between added Pb and Pb2+ 

in solution, this difference is not linear with increasing concentration and needs to 

be accounted for. Because our sensor responds to Pb2+ it is important to know 

the concentration of free Pb2+ in solution for accurate calibration.  

In Figure 3.5.B, the responses to the total solution Pb are plotted in blue and 

free Pb2+ concentrations are plotted in red. When taking speciation into account, 

the sensitivity of our method to Pb2+ is improved: above, we reported a sensitivity 

of 0.17 nA µM-1 or 0.84 nA ppm-1 and an LOD of 10 µM or 2.1 ppm; in actuality 

the sensitivity is 0.20 nA µM-1 or 1.0 nA ppm-1 and the LOD is 8.4 µM or 1.7 ppm.  

3.3.5 Pb Detection in Real Environmental Samples  

We have designed and characterized a robust experimental model for 

quantifying Pb fluctuations in real-time. While invaluable for studying metals in 

solutions of known composition, it is important to establish our method’s 

feasibility for studying real environmental samples of unknown composition.  

In Figure 3.6, we used real stormwater samples as our flow injection analysis 

solvent. We spiked the samples with three different Pb2+ concentrations (A: 20 

µM, B: 50 µM, C: 100 µM) and injected these onto our CFM. The top panel of 

Figure 3.6 displays the corresponding color plots, where rapid, concentration 

dependent Pb responses can be observed. CVs collected from the vertical white 

dashed lines are displayed in the bottom panel. These CVs resemble those 

collected with our model solution (Figure 3.4); however, the peaks are more 

separated on the potential axis. This increased separation is to be expected 
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since the solution resistance, which determines the IR drop across the electrode, 

is different. We therefore show proof of principle that our method can be applied 

in real environmental systems to measure rapidly fluctuating Pb.  

 

Figure 3.6. Flow injection analysis of real samples spiked with Pb. The top 
panel shows color plots during the injection and the bottom panel displays 
CVs taken from the vertical white dashed lines. Plots A – C represent 
responses to different Pb concentrations (20, 50 and 100 µM, respectively). 

 

3.4 Conclusions 

It is important to mitigate the impact of Pb on the environment since it is a 

pressing public health issue. In order to design effective mitigation strategies, it is 

essential that Pb can be analyzed in dynamic environmental systems. 

Electrochemical Pb analysis has traditionally been limited by its temporal 

resolution, Hg toxicity and stability concerns. In this paper we described safe, 

stable and fast analysis of Pb with FSCV. Additionally, we modeled test solutions 

to mimic environmental stormwater runoff. When coupled to our analysis 

approach, we showed that our novel method can characterize Pb in model and 
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environmental systems. Our technology heralds a new wave of electrochemical 

sensors that can ultimately be developed for effective on-site metals analysis. 
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CHAPTER 4. A DENSITY-CONTROLLED SCAFFOLDING 
STRATEGY FOR COVALENT FUNCTIONALIZATION OF 

CARBON-FIBER MICROELECTRODES 
 

Trace metal detection is of great importance in environmental and biological 

systems. Recently, we described a method for ultrafast and sensitive detection of 

Cu(II) and Pb(II) in aqueous environmental samples using fast scan cyclic 

voltammetry (FSCV) at carbon-fiber microelectrodes (CFMs). In this chapter, we 

describe a scaffolding strategy for covalent modification of CFMs as a platform 

for creating selective adsorption sites. We create a monolayer of acetylene-

terminated scaffolds on CFMs through the electrochemical reduction of alkynyl 

aryl diazonium salts bearing sterically differentiated silyl groups, which control the 

density of the scaffolds. Desilylation reveals the alkyne for further 

functionalization via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). As a 

proof of principle, we optimized the conditions for azidomethyl ferrocene to be 

grafted with the alkynes. The generalized approach offers the potential to attach 

azide-appended recognition groups to different electrodes in a high throughput 

manner. This technology will ultimately allow real-time ultra-selective FSCV 

analysis of metals in complex ecological and biological systems.  

 

Yang, Y., Ibrahim, A. A., Stockdill, J. L. and Hashemi, P. Analytical Methods, 

2015, 7: 7352-7357. Reprinted with permission from Copyright (2015) Royal 

Society of Chemistry.  
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4.1 Introduction 

Detection of trace metals in real-time has important applications in 

environmental and biological processes. Trace metal contamination of aquatic 

environments is highly toxic to plants and animals with humans at a particularly 

high risk because of trace metals’ ability to bioaccumulate.124,125 Biologically, 

there is significant evidence that metals play dynamic physiological roles, 

specifically as neurotransmitters.126,127 Therefore, sensitive, qualitative, and rapid 

detection of trace metals would greatly aid investigations into environmental 

pollution and physiological disease.  

There are few analytical methods that can report trace metal levels in such 

harsh, complex environments in real time. We recently described a method 

applying fast scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes 

(CFMs) for real-time measurement of Cu(II)44 and Pb(II).45 We showed that 

CFMs have a unique ability to adsorb metals, allowing for ultra rapid 

electrochemical detection.35 Metals adsorb to carbon surfaces with differing 

affinities;128 however, adsorption affinities are pre-defined (via mode of surface 

activation) and do not allow sufficient selectivity for analysis in multi-component 

systems. To address this issue, different modifications have been made on 

CFMs to improve analytical selectivity. The most popular method for modifying 

CFMs is surface activation via over-oxidation.129-131 Other approaches include 

modification with charge-exchange polymers (e.g., Nafion)77,132,133 and carbon 

nanotubes.133-135 These modifications significantly enhance selectivity77,132,133 
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and sensitivity;129-131,133-135 however, they do not provide selective adsorption for 

analytes of similar charge (i.e., metals).   

In this paper, we describe a robust strategy to utilize CFMs as a platform for 

creating selective adsorption sites by modifying and applying a protocol for 

electrochemical reduction of alkynyl aryl diazonium salts to CFMs. Our covalent 

modification displays a layer of density-controlled scaffolds ready for grafting of a 

variety of functional molecules. We first synthesized a series of aryl diazonium 

salts bearing sterically-differentiated silyl groups. We then optimized a protocol 

for reductive coupling of these species to the CFM surface. Next, we deprotected 

the silyl functionality to reveal the reactive alkynes. Finally, we optimized the 

conditions for copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of 

azidomethylferrocene with these alkynes. Each step was verified 

electrochemically. Ultimately, the CuAAC reaction can be conducted with a 

variety of azide-appended ligands selective for analytes of interest. This novel 

strategy represents a general approach to producing analyte-selective CFMs in a 

high throughput manner, which will eventually enable ultra-selective FSCV 

analysis of metals in complex ecological and biological systems. 

4.2 Materials and Methods 

4.2.1 Chemicals 

Tetrabutylammonium hexafluorophosphate (TBAPF6), tetrabutylammonium 

fluoride (TBAF), ferrocene, CuSO4·5H2O and ascorbic acid were of analytical 

grade from Sigma-Aldrich, St. Louis, MO. Diazonium reagents and 

azidomethylferrocene were synthesized according to the procedures in 
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Appendix B. Abbreviations are as follows: trimethylsilyl (TMS), t-

butyldimenthylsilyl (TBS), triisopropylsilyl (TIPS). 

4.2.2 Carbon-fiber microelectrodes 

CFMs were fabricated by vacuum aspirating a 5 µm radius carbon-fiber (T-

650, Goodfellow Corporation, PA) into a glass capillary (1.0 mm external 

diameter, 0.5 mm internal diameter, A-M Systems, Inc., Sequim, WA). The 

carbon-fiber filled capillary was pulled with a vertical micropipette puller 

(Narishige, Tokyo, Japan) to form a carbon-glass seal. The carbon-fiber end was 

trimmed to have an exposed length of 150 µm out of the capillary under an 

optical microscope. 

4.2.3 Instrumentation and data acquisition 

All electrochemical measurements were performed with Dagan ChemClamp 

potentiostat (Dagan, Minneapolis, MN) and customized software, CV (Knowmad 

Technologies, AZ), written in LAB-VIEW 2012 (National Instruments, Austin, TX). 

A two-electrode system was employed. The working electrode was a CFM. The 

reference Ag/AgCl electrode was fabricated by electroplating Cl– ions onto silver 

wire (A-M systems, WA) for 5 s. All cyclic voltammograms (CVs) were collected 

and averaged out from 4 different electrodes. Data were smoothed with a 3-point 

moving average filter. Student’s T-tests were performed on unpaired data sets. 

4.2.4 Reductive Coupling of Diazonium Salts to the CFM surface 

A bare CFM (CFM1) was cycled between +0.80 and -0.55 V vs. Ag/AgCl at 

scan rate 0.05 V s-1 in ACN containing 0.01 M silylated diazonium salt (4a-c) as 

reactant and 0.1 M TBAPF6 as electrolyte to generate a silylated CFM (CFM2). 
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CFM2 was carefully rinsed with ACN and acetone for three times. Desilylation 

was achieved by dipping CFM2 in a solution of 0.1 M TBAF in THF for 5 min. The 

desilylated CFM (CFM3) was cleaned with a copious amount of THF and 

acetone. Electrochemistry of ferrocene was accessed for differently silylated 

CFMs (4a-c) at three stages (CFM1, CFM2, CFM3). The CFM was cycled 

between 0 and +0.8 V vs. Ag/AgCl at scan rate 0.1 V s-1 in a solution of 1 x 10-3 

M ferrocene in ACN (+0.1 M TBAPF6).  

4.2.5 Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) at CFM 

In the presence of 0.05 M CuSO4·5H2O and 0.1 M L (+)-ascorbic acid as 

catalysts, CFM3 was stirred in 0.05 M azidomethylferrocene in DMF for at least 2 

hours to produce ferrocene-appended CFM (CFM4). CFM4 was rinsed with 

acetone for 1min, stirred 10 min in 1 M HCl, 10 min in saturated EDTA, and 10 

min in deionized water to remove any residue if presented.136 CFM4 was ready to 

be immediately used after drying in an oven at 70 ºC for 30 min. 

4.3 Results and Discussion 

4.3.1 Prior Electrode Modifications 

One of the most effective approaches to impart selectivity is to introduce 

selective modifiers to electrodes. For example, in solid-contact ion-selective 

electrodes, ionophores are normally incorporated in transducer membranes (e.g., 

polymers,137-139 nano-materials140-142) and then deposited onto electrode surfaces. 

Ionophores selectively bind to metal ions of a particular size and charge. 

Electrodes coated with these membranes often have delayed response times 

because of restricted diffusion caused by membrane thickness. Additionally, the 
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lifetime and stability of these electrodes is compromised due to water layer 

formation.139,143 

Covalent modification of electrode surfaces largely circumvents issues of lag 

time and stability. Carbon based electrodes have rich surface chemistry that 

lends itself to forming various types of covalent bonds. Oxidation of carbon 

surfaces results in the formation of hydroxyl groups or carboxylates. This 

modification in itself increases sensitivity and selectivity to cations because of 

increased adsorption to the electrode surface. Additionally, surface groups that 

arise after carbon activation can be reacted with molecules bearing selective 

recognition groups. For example, surface hydroxyl groups can be reacted with 

molecules bearing activated carboxylic acid moieties to generate ester linkages58 

and surface carboxylate groups can be reacted with amines to form amide 

bonds.144-146 These methods enable covalent attachment of recognition 

molecules to electrode surfaces; however, these processes involve harsh 

reagents, produce unwanted side reactions, and result in inconsistent and limited 

electrode surface coverage.56 

More recently, Rosenthal and Watson employed electro-grafted aryl groups to 

functionalize carbon paper.147 Both of these approaches allowed the reaction of 

alkyne-appended aryl diazonium species with carbon surfaces. In the latter work, 

three strategies were reported to subsequently attach recognition motifs: Hüisgen 

cycloaddition (copper-mediated azide-alkyne cycloaddition), Sonogashira 

coupling, and Glaser reactions.147 
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For CFMs, strategies are limited. Wightman and Anderson also utilized the 

diazonium reduction approach to attach moieties to CFMs.67 This work described 

attachment of a nitroaryl diazonium, followed by reduction to the amine, and 

amide bond formation. While reductive coupling of diazonium salts is among the 

mildest and most reproducible methods for functionalizing CFMs,56 it is currently 

limited by the need to design and synthesize a new aryl diazonium salt for each 

desired modification. The incompatibility of diazonium species with many organic 

reaction conditions, in addition to the conflict of many organic functional groups 

with the conditions required for generating the diazoniums limits the potential to 

apply this approach in a general way. Furthermore, the electrochemical coupling 

protocol (applied potential, solvent, reaction time, etc.) for each of these aryl 

diazonium salts must be individually optimized. We therefore sought to develop a 

general, high-throughput strategy to facilitate CFMs selective for a variety of 

analytes. Theoretically, a large number of identical electrodes could be rapidly 

generated, and then a variety of recognition molecules could be attached in a 

diversifying approach (vide infra). 

4.3.2 Toward A General Approach to Covalent CFM Modification 

Scheme 4.1. Planned general strategy for CFM modification. 
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We envisioned a modular strategy for covalent CFM modification, wherein a 

single molecular entity could be used to conduct an initial surface 

functionalization to form a surface presenting a monolayer of molecular scaffolds 

for further functionalization. These scaffolds could then be reacted with a wide 

range of ligands bearing a functional group of complimentary reactivity, which 

would allow for the generation of a diverse set of analyte-selective CFMs. We 

favored a strategy similar to those reported by Hapiot and Rosenthal and Watson, 

namely, self-inhibiting reduction of an aryl diazonium salt bearing a functional 

group handle for further manipulation (i.e., an alkyne)64,65,147. We anticipated that 

application of this approach to a CFM would afford alkyne-scaffolded CFMs 

poised for further reaction with a diverse set of azides, linking analyte-selective 

ligands to the CFM via a triazole moiety (Scheme 4.1).  

Each resulting electrode would exhibit enhanced detection of its particular 

analyte by biasing the adsorption (pre-concentration) equilibrium in favor of the 

target analyte.35 Once optimized, this protocol should enable systematic 

generation of seective devices for the real-time detection of important metal 

analytes in complex biological and environmental systems via FSCV. 

4.3.3 Synthesis of Aryl Diazonium Salts Bearing Sterically-Differentiated 

Silyl Groups 

A series of alkynyl aryl diazonium salts protected by silyl groups of varying 

sizes were synthesized via a straightforward 2-step protocol (Scheme 4.2). 4-

Iodoaniline (1) was subjected to Sonogashira cross coupling conditions with 

different alkynyl silanes, from the relatively compact TMS (2a) to the moderately 
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sized TBS (2b) to the quite bulky TIPS (2c). The product aryl amines (3a-c) were 

treated with sodium nitrite in HBF4 to afford the corresponding diazonium 

tetrafluoroborate salts (4a-c) in good yields. (see Appendix B).  

Scheme 4.2. Alkynyl diazonium salts synthesis 

	

 

4.3.4 Protocol for Reductive Coupling of Diazonium Salts to the CFM 

surface  

Scheme 4.3 illustrates the creation of the scaffolds. A reduction potential was 

applied to the bare CFM (CFM1), resulting in electron transfer to the silylated 

diazonium salt (4a-c). The resulting diazenyl radical fragmented to release N2 

and an aryl radical. Recombination of the aryl radical with the CFM surface 

resulted in C–C bond formation and afforded a silylated CFM (CFM2).148 

Deprotection of the silyl moieties was accomplished in only 5 minutes by 

exposure to TBAF, unveiling alkyne-terminated scaffolds (CFM3). These 

reactions were followed electrochemically as described below. First, the process 

of grafting the TMS-substituted diazoarylalkyne (4a, Figure 4.1.A(i)) onto the 

CFM was monitored via collection of a CV during the electroreduction process 

(Figure 4.1.A(ii)). 
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Scheme 4.3. CFM functionalization by reductive coupling. 

	

 

 

Figure 4.1. (i) Aryldiazonium salts employed for each electrode, (ii) CVs of 
self-inhibiting attachment of diazonium salts to the electrodes, (iii) ferrocene 
tests confirm attachment and deprotection of the silyl groups. 
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confirmed the conversion of CFM1 (black trace) to CFM2 (blue trace) due to the 

loss of the ferrocene redox couple (Figure 4.1.A(iii)). Upon desilylation to 

generate CFM3, the redox couple re-appears (red trace), establishing the 

availability of the surface for redox chemistry. 

The same steps were executed for the larger TBS (4b) and TIPS (4c) groups. 

The same electrochemical trends were apparent for these salts with two notable 

differences (Figure 4.1.B-C). First, as expected, the reduction peaks occurred at 

progressively more negative potentials for each diazonium salt (from 4a, 4b to 

4c). As the electron withdrawing nature of the silyl groups decreases from TMS 

(4a) to TBS (4b) to TIPS (4c), the diazonium salt becomes less electrophilic, and 

a higher reductive potential is required for the reaction.149 Second, the silylation 

is auto-inhibitory which creates monolayer structures on CFMs. An important 

advantage of our method is that the packing density on the CFMs’ surface is 

controlled by and correlates to the size of the silyl groups. Notably, CVs collected 

after deprotection showed an increased response to ferrocene as the size of the 

templating silyl group increased. This effect is consistent with the observations of 

Hapiot and co-workers.65 

4.3.5 Optimization of Conditions for Azide-Alkyne Cycloaddition 

We envision the use of “click” chemistry as a general method to graft many 

different recognition groups onto our scaffolds. To establish the feasibility of this 

approach, we attached ferrocene onto the scaffolds through copper(I)-catalyzed 

azide-alkyne cycloaddition (CuAAC). Ferrocene is a well-established probe to 

assess the integrity of modification strategies.150 As shown in Scheme 4.4, 
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alkyne-substituted electrodes (CFM3) were reacted with azidomethyl ferrocene, 

linking ferrocene to the electrode via a triazole moiety (CFM4).  

Scheme 4.4. CuAAC of azidomethylferrocene (5) and the alkyne scaffolds. 

 

Hapiot and co-workers use either a 1:1 mixture of THF and water or a 1:1 

mixture of ethanol and water. Aqueous and ethanolic solutions are typically most 

effective in CuAAC chemistry.63 Unfortunately, the low solubility of 

azidomethylferrocene (5) limits the utility of these conditions on the much smaller 

microelectrode surface. Watson and co-workers used DMF, which offers 

improved solubility of the azide, but their reactions were conducted in a 

glovebox.147 We sought to identify conditions that would be robust across a range 

of potential azides, and ultimately could be adopted with facility by the broader 

community. We focused on simplifying the DMF reaction, given the exceptional 

solubilizing ability of DMF, by removing the need for a glove box. Further, we 

conducted these studies on the benchtop because we wanted a protocol that 

would not require specialized equipment for inert atmosphere. A thorough and 

systematic optimization of the reaction parameters was performed to achieve this 

simplification. For operational simplicity and cost, we used a solution of 
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CuSO4·5H2O and ascorbic acid to generate Cu(I) in situ.62 A slight excess of 

ascorbic acid to prevent formation of oxidative coupling products of Cu(I). 

We electrochemically verified the attachment to CFM4. Figure 4.2 shows the 

precursor diazonium salts (4a-c, A-Ci) used to create the scaffolds and the CVs 

obtained after ferrocene attachment (CFM4, A-Cii). These CVs were obtained in 

a solution of acetonitrile using TBAPF6 as the supporting electrolyte. The 

ferrocene/ferrocenium redox couple was identified at +0.6/+0.4 V vs. Ag/AgCl at 

scan rate of 10 V s-1. This ferrocene signal established the successful reaction of 

our alkyne scaffolds with the azide via CuAAC. We optimized the reaction 

conditions by measuring the change in oxidation current of the CVs as each 

parameter was adjusted. Specifically, we varied the concentrations and 

equivalents of ascorbic acid, copper sulfate, and azide 2 as well as the reaction 

time. Ultimately, we found that immersion of CFM3 in a DMF solution of 0.05 M 

CuSO4·5H2O, 0.1 M (+)-ascorbic acid, and 0.05 M azidomethyl ferrocene (5) was 

optimal. The current intensity decreases as the size of silyl groups increases 

from TMS (4a) to TBS (4b) to TIPS (4c), indicating that fewer ferrocene 

molecules are linked to the electrode. This observation validates the hypothesis 

that the density of the scaffolds can be tuned by adjusting the steric bulk of the 

silyl groups.  
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Figure 4.2. (A-Ci) Aryldiazonium salts employed for each electrode, (A-Cii) 
CVs of ferrocene-appended electrodes, (D) Optimization of CuAAC 
attachment time. 
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To optimize the coupling time for ferrocene-appended CFMs (CFM4s) 

generated from 4a-c, we investigated the influence of reaction time on the 

ferrocene signal intensity. As shown in Figure 4.2.D, we varied the reaction time 

from 10 to 300 min and found that as reaction time increased, there was an 

overall signal increment for all the CFM4s until they reached their maximum 

coverage in a sequence of tTMS (orange) > tTBS (purple) > tTIPS (green). By 120 

min, the TBS (4b-CFM4) and TIPS (4c-CFM4) had reached a maximum current 

intensity. 

The TMS signal was not measured beyond 300 min. However, at this time 

point, the signals from the 3 types of electrodes were well differentiated. At 

earlier time points, the reaction is incomplete, and the effect of the changes in 

surface functionalization density cannot be detected. These qualitative 

observations were statistically confirmed. After 2 h, the density difference was 

significant (p = 0.042 (TMS/TBS), 0.016 (TMS/TIPS), and 0.049 (TBS/TIPS)). 

4.4 Conclusions 

Real-time trace metal determination is of great importance in environmental 

and biological systems. A highly promising technique is FSCV at CFMs, which 

we have previously utilized for ultrafast and sensitive detection of Cu(II) and 

Pb(II). Because metals of similar size and charge adsorb strongly to CFM 

surfaces, the selectivity of FSCV towards metals in complex media is limited. In 

this paper, we developed an efficient, robust, and tunable covalent modification 

method for CFM functionalization. We electrochemically generated a monolayer 

of acetylene-terminated scaffolds on CFMs at different densities. We also 
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established mild reaction conditions for the attachment of azides to the alkyne 

scaffolding groups. This work provides the foundation for the development of a 

broadly applicable, systematic approach to creating a variety of functionalized 

electrodes. Our technology will ultimately provide selective carbon fiber based 

sensors that will facilitate real-time detection of important analytes in complex 

biological and environmental systems. 
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CHAPTER 5. REAL-TIME, ULTRA-SELECTIVE DETECTION OF 
COPPER(II) USING IONOPHORE-GRAFTED CARBON-FIBER 

MICROELECTRODES  
 

Rapid detection of Cu(II) is analytically valuable. We recently described a 

real-time Cu(II) electroanalysis method based on fast-scan cyclic voltammetry 

(FSCV) at carbon-fiber microelectrodes (CFMs). To enhance the sensitivity of our 

method, we previously designed a generalized covalent functionalization strategy 

for CFMs. In this chapter, we report the first effective application of this technique 

by modifying CFMs with a Cu(II) ionophores. We describe our 3-step modification 

method with simultaneous blocking of coordination sites of other ions. In a 

chemically complex medium, we were able to make ultra-selective and fast Cu(II) 

measurements This strategy represents a transformative innovation in 

development of a robust on-line detection device for metal analysis. 

 

Yang, Y., Ibrahim, A. A., Hashemi, P. and Stockdill, J. L. “Real-Time, Ultra-
Selective Detection of Copper(II) using Ionophore-Grafted Carbon-Fiber 
Microelectrodes’’, In preparation  
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5.1 Introduction 

Electrochemical micro-sensors for rapid, selective and sensitive Cu(II) 

detection is highly desirable in a number situations including analysis in biological, 

environmental and industrial systems.10,151-154 While ion selective electrodes 

have shown promise for electrochemical Cu(II) analysis, they suffer from low 

stability and their response time (5-20 minutes) does not afford information on a 

rapid enough timescale to investigate fast processes.23 

As explained in Chapter 2, we recently pioneered fast-scan cyclic 

voltammetry (FSCV) at carbon-fiber microelectrodes (CFMs) for ultra-fast Cu(II) 

detection.35,44,45 The ultra-micron dimensions of the CFM are minimally disturbing 

to their analysis medium, and their chemically rich, striated surface promotes 

sufficient pre-concentration of cations for highly sensitive Cu(II) analysis every 

100 miliseconds.35 A fundamental technical aspect that has hindered application 

of our method to real samples, which we address in this communication, is 

analytical selectivity. 

We have studied Cu(II) adsorption onto CFMs in detail.35 The ambient oxygen 

moieties on CFMs responsible for cation preconcentration do not provide a high 

level of discrimination between metal ions. This non-selective adsorption makes 

it significantly challenging to apply voltammetry, albeit a selective method, to 

samples containing multiple metal ions. 

We postulate that creating a mechanism for selective adsorption will enable 

an ultra-selective FSCV sensor. In Chapter 4, as a first step towards addressing 

this postulation, we recently reported a general strategy to covalently 
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functionalize CFMs.155 A monolayer of acetylene-terminated scaffolds were 

grafted onto CFMs via electrochemical reduction of diazonium salts, and the 

backbone was appended with ferrocene through Cu(I)-catalyzed azide-alkyne 

cycloaddition as proof of principle of the modification.155  

In this chapter, we extend this work by modifying CFMs with a Cu(II) 

ionophore which facilitates selective Cu(II)  adsorption onto CFMs. We use this 

sensor to selectively detect Cu(II) as the minor component of a mixed metal 

solution. This essential bringing together of two powerful analytical methods 

(ISEs and voltammetry) represents a crucial advancement for rapid and selective 

trace metal electroanalysis because it capitalizes on the unparalleled temporal 

capabilities of FSCV while imparting selectivity via covalent attachment of a 

Cu(II)-ionophore. 

5.2 Materials and Methods 

5.2.1 Chemicals 

Tetrabutylammonium hexafluorophosphate (TBAPF6), tetrabutylammonium 

fluoride (TBAF), ferrocene, CuSO4·5H2O and ascorbic acid were of analytical 

grade from Sigma-Aldrich, St. Louis, MO. Diazonium reagents and 

azidomethylferrocene were synthesized according to the procedures in 

Appendix C. Abbreviations are as follows: trimethylsilyl (TMS), t-

butyldimenthylsilyl (TBS), triisopropylsilyl (TIPS). 

5.2.2 Carbon-fiber Microelectrodes 

CFMs were fabricated by vacuum aspirating a 5 µm radius carbon-fiber (T-650, 

Goodfellow Corporation, PA) into a glass capillary (1.0 mm external diameter, 0.5 



www.manaraa.com

71	
	

mm internal diameter, A-M Systems, Inc., Sequim, WA). The carbon-fiber filled 

capillary was pulled with a vertical micropipette puller (Narishige, Tokyo, Japan) 

to form a carbon-glass seal. The carbon-fiber end was trimmed to have an 

exposed length of 150 µm (or 200 µm, 300 µm) out of the capillary under an 

optical microscope. 

5.2.3 Diazonium Electrochemical Reduction At CFMs 

The covalent modification route for CFM is shown in Scheme 5.1.  A bare 

CFM (CFM 1) was cycled between +0.80 and -0.8 V vs. Ag/AgCl at scan rate 

0.05 V s-1 in ACN containing 0.01 M silylated diazonium salt as reactant and 0.1 

M TBAPF6 as electrolyte to generate a CFM 2. The CFM 2 was carefully rinsed 

with ACN and acetone three times. Deprotection was achieved by dipping CFM 2 

in a solution of 0.1 M TBAF in THF for 20 min. The deprotected CFM (CFM3) 

was cleaned with a copious amount of THF and acetone. 

5.2.4 Copper(I)-Catalyzed Azide-Alkyne Cycloaddition 

CuAAC was accomplished by treatment of  CFM 3 or 3’ with a stirred solution 

of 0.05 M azido-ionophore, 0.05 M CuSO4·5H2O, and 0.1 M L (+)-ascorbic acid in 

DMF for 4 h to produce ionophore-grafted CFM 4 or 4’. The resulting electrode 

was then rinsed with acetone, stirred in saturated EDTA for 10 min, then in 

deionized water for 10 min to remove any residue from the electrode surface. 

5.2.5 Silylation Of Surface Oxygen Groups 

CFM 3 was inserted into an Ar-purged air-tight vial containing a 10.00 mL 

CH2Cl2 solution of 0.10 M TMSCl, 0.11 M Imidazole, and 0.01 M 4-
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dimethylaminopyridine. A reductive potential of –1.9 V was then applied for 4 h to 

generate CFM 3’.  

5.2.6 Electrochemical Characterization 

All electrochemical measurements were performed with a Dagan ChemClamp 

potentiostat (Dagan, Minneapolis, MN) and customized softwares, CV and FSCV 

(Knowmad Technologies, AZ), written in LAB-VIEW 2012 (National Instruments, 

Austin, TX). A two-electrode system was employed. The working electrode was a 

CFM. The reference Ag/AgCl electrode was fabricated by electroplating Cl– ions 

onto silver wire (A-M systems, WA) for 5 s. All cyclic voltammograms (CVs) are 

the averaged data collected from 4 different electrodes. Student’s T-tests were 

performed on unpaired data sets. 

5.3 Results and Discussion 

5.3.1 Organic Synthesis Strategy 

At the outset of our work, we identified Cu(II) ionophore I (Selectophore 1), a 

commercially available ionophore, as an excellent candidate structure for 

rendering Cu(II) selectivity to CFMs (Scheme 5.1).156 However, to accomplish a 

covalent modification, we required a chemically modified version of Selectophore 

possessing an azide functional group handle. Thus, azido-ionophore 7 was 

synthesized from commercially available 3-nitrophthalic acid (2). Selective 

borane reduction of the carboxylic acids was accomplished in quantitative yield, 

generating diol 3. Hydrogenolysis of the nitro group then yielded aniline 

derivative 4, which was converted to the corresponding azide (5) in the presence 

of TMS azide and t-butyl nitrite. Bromination of the benzylic alcohols afforded 



www.manaraa.com

73	
	

dibromide 6, which was then treated with a pre-stirred solution of CS2, 

diisobutylamine, and K2CO3 in MeOH to provide the desired azide-appended 

ionophore 7. 

 Scheme 5.1. Synthesis of azido-ionophore (compound 7) 

 

As outlined in Scheme 5.2, a potential was applied to a bare CFM (CFM 1) in 

the presence of diazonium salt 8 to produce CFM 2. Desilylation of CFM 2 was 

accomplished in the presence of TBAF to generate a scaffolded electrode (CFM 

3). Subsequent azide-alkyne cycloaddition with azido-ionophore derivative 7 

completed the functionalization process, affording CFM 4. Each step of the CFM 

functionalization process was monitored electrochemically with FSCV (see 

Appendix D for details)  
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Scheme 5.2. Covalent modification strategy towards Cu(II) selective CFM. 

 

5.3.2 Characterization of Modified CFM  

Using an FSCV waveform we previously developed for Cu(II), we compared 

the responses of bare electrodes (CFM 1, Column I) to ionophore-grafted 

electrodes (CFM 4, Column II) to a flow injection of a solution of Cu(II) in NaCl 

(Figure 5.1.A) and to a flow injection of a solution consisting of 8 other divalent 
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time on the x-axis, and current in false color. A representative cyclic 
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types of adsorption sites (oxygen moieties and ionophore) now available. While it 

is difficult to attribute the peaks to specific adsorption sites, a later experiments 

imply that the peak at -0.9 V arises from the Cu(II) adsorbed onto ionophore sites. 

This more negative potential is consistent with the higher equilibrium constant 

(10) for Cu(II) adsorption to Selectophore (approx.1010) vs. bare CFMs (approx. 

107) requiring more energy for Cu(II) reduction. 

In Figure 5.1.B, a mixture of 1 µM Cu(NO3)2 and 10 µM each of Zn(NO3)2, 

Cd(NO3)2, Ni(NO3)2, Co(NO3)2, Ca(NO3)2, Mg(NO3)2, Pb(NO3)2, and Mn(NO3)2 

was flow injected onto bare electrodes (CFM 1, Column I) and the ionophore-

grafted electrodes (CFM 4, Column II). In both cases, it is impossible to 

distinguish any recognizable Faradaic features in the CVs. We hypothesized that 

because our modification occurs via a C-C bond, it has little effect on the ambient 

oxygen functionalities on the CFM surface, thus the other divalent metal ions 

remain free to adsorb onto the CFM. 
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Figure 5.1. Comparison of (I) unfunctionalized and (II) Cu(II)-ionophore-
functionalized electrodes in (A) 1 µM Cu(II) and (B) mixed metal (1.0 µM 
Cu(II), 10 µM each: Zn(II), Cd(II), Ni(II), Co(II), Ca(II), Mg(II), Pb(II), Mn(II)) 
solutions. All counterions are NO3

–. Waveform: –1.2/+0.8 V, Exposed carbon 
fiber length: 150 µm. 
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5.3.3 Syilation of Surface Oxygen Groups  

These oxygen-containing functional groups are primarily hydroxyl groups.80 

Thus to hinder adsorption of interfering analytes, we modified the electrode 

fabrication process to include a blocking step that would mask the majority of 

these sites. As shown in Scheme 5.3, the scaffolded CFM 3 was exposed to a 

solution of t-butyldimethylsilyl chloride in the presence of triethylamine to convert 

any hydroxyl groups present to the corresponding silyl ethers, which are known 

to be poor chelators to metal ions. This process was conducted while applying a 

negative potential to the electrode with the aim of reducing any carbonyl groups 

that might be present to the corresponding alcohols in situ. These alcohols would 

then be blocked by the silyl groups, ultimately affording CFM 3’. Azide-alkyne 

cycloaddition was executed as above to access ionophore-grafted electrode 

CFM 4’ with blocked surface oxygenation. 

Scheme 5.3. Inhibition of surface oxygen groups on CFM 3. 
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To validate the efficacy of this blocking protocol, CFM 3’ was characterized by 

its response to a 1.0 µM Cu(NO3)2 solution (Figure 5.2).  

 

Figure 5.2. In 1 µM Cu(II) solution, (I) Scaffolded, O-blocked electrodes show 
no signal and (II) Cu(II)-ionophore-functionalized, O-blocked electrodes show 
expected color plot and CV for Cu(II). Waveform: –1.2V/+0.8 V, Exposed 
carbon fiber length: (I) 150 µm, (II) 300 µm. 

As we anticipated, CFM 3’ (Column I) shows no significant electrochemical 

signal, indicating successful blocking of the oxygen adsorption sites on the 

electrode. Initially, when the exposed carbon fiber of CFM 4’ was 150 µM in 

length, minimal signal was observed. We reasoned that because of the spacing 

between the aryl alkyne scaffolding groups, there should be a significant 

decrease in adsorption sites for Cu(II) in CFM 4’ relative to CFM 4, which has 

adsorption sites derived from both the ionophore and surface oxygen groups. To 
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increase the number of adsorption sites available to Cu(II), we increased the 

length of the electrode to 300 µM and repeated the functionalization process in 

Scheme 5.3. After this alteration, CFM 4’ showed a very clear reduction peak at 

–0.9 V upon exposure to 1.0 µM Cu(II) (Figure 5.2, Column II). 

5.3.4 Cu(II)Selective CFM 

We next returned our attention to selective detection of Cu(II) in a mixed 

metal solution. CFM 4’ was exposed to the mixed metal solution (vide supra) via 

flow injection (Figure 5.3, Column II). CFM 4’ clearly showed reversible 

Faradaic behavior with a strong reduction peak at –0.9 V. Importantly, there was 

no apparent signal arising from any of the other metals in the solution. Thus, our 

ionophore-grafted, O-blocked electrodes are able to detect Cu(II) as the minor 

component of a mixture of metal ions. The streaking behavior in the color plot for 

this electrode (CFM 4’) indicates a prolonged clearance time for Cu(II) relative to 

the bare electrode (CFM 1). This observation is unsurprising considering the 

higher Kads of Selectophore vs. the bare CFM. Electrochemical optimizations of 

the waveform can be created to circumvent this, which is the focus of our future 

studies. This is the first time that FSCV has given a purely selective response to 

one analyte, and to our knowledge the first time that Cu(II) has been measured 

selectively with sub-second temporal resolution at a micro-sensor. 
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Figure 5.3. In mixed metal solution, (I) unfunctionalized electrodes cannot 
detect Cu(II) (data repeated from Figure 5.2.B for convenience), and (II) 
Cu(II)-ionophore-functionalized, O-blocked electrodes show Cu(II) redox 
signal. Waveform: –1.2V/+0.8 V, Exposed carbon fiber length: (I) 150 µm, (II) 
300 µm. 
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taken weekly for the first 4 weeks, and monthly after that. The averaged, 

normalized current at these specific time points was again excellent showing that 

the ionophore does not undergo any decomposition upon storage over this time 

period. 

 

Figure 5.4. Stability tests of ionophore-grafted electrodes with blocked 
surface oxygenated groups. (A) Response of CFM 4’ to 50 successive 
injections of 1.0 µM Cu(II). (B) Response of CFM 4’ to injections of 1.0 µM 
Cu(II) over 16 weeks. 
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ionophores, enabling real-time ultra-selective detection of Cu(II). This sensor 

heralds a transformative step for electroanalysis in providing unparalleled 

selectivity and temporal resolution. 
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CHAPTER 6. A NOVEL CARBON NANOFIBER PYROLYZED 
PHOTORESIST MICROELECTRODE ARRAY FOR FAST SCAN 

CYCLIC VOLTAMMETRY ANALYSIS 
 

Pyrolyzed photoresist film (PPF) microelectrode arrays (MEAs) show a great 

deal of promise for multi-dimensional electrochemical recordings. In this paper, 

as a first step towards achieving our ultimate goal of simultaneous, selective 

detection of multiple different targets, we fabricate MEAs with a highly 

reproducible and rich chemical surface area for fast scan cyclic voltammetry 

(FSCV) analysis. We manipulate electrode surface area without compromising 

electrode dimensions via creation of nanofibers from negative pyrolyzed 

photoresist. Nanofibers are created by employing a two-step pyrolysis process 

and applying a dual O2 plasma. We illustrate how our novel approach improves 

film adhesion and increases surface reactivity. We finally showcase the 

electrodes’ suitability for FSCV analysis by demonstrating a highly sensitive and 

stable FSCV dopamine measurement on a prototype 4-channel array. 

 

Yang, Y.,* Yi, W.,* Hashemi, P., Cheng, M. “A Novel Carbon Nanofiber Pyrolyzed 

Photoresist Microelectrode Array for Fast Scan Cyclic Voltammetry Analysis” In 

preparation, *Contributed equally.  
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6.1 Introduction 

Carbon materials are widely employed in microsensor fabrication because 

they are versatile, low cost and display excellent electrochemical properties and 

biocompatibility.158,159 Traditional manufacturing processes for carbon-based 

microelectrodes include encapsulation of carbon fibers with insulation 

materials,160-162 deposition of carbon materials directly on micro-pipets163,164 and 

formation of carbon from pyrolysis of polymer or photoresist coated on micro-

pipets.165,166 The application of these single-unit configurations is limited in 

integrative environments where spatial resolution and multiple targets are of 

great significance. Therefore recently, micro-fabricated carbon electrodes with 

multiple sensing elements are gaining popularity. 

Carbon films have been sputtered167 or vacuum-deposited onto various 

substrates.168 However, these microfabrication processes suffer from poor 

adhesion.169 A robust microfabrication process involving pyrolysis of a patterned 

photoresist has recently been developed to form carbonaceous microelectrode 

arrays (MEAs).47,158,169-180 The photoresist, as a starting material for 

microelectrode fabrication, is especially advantageous because it is finely and 

reproducibly patterned by lithography techniques.181 Pyrolyzed photoresist film 

(PPF) electrodes can sense molecules such as neurotransmitters,47,172,174-176 

O2,176 glucose,179,180 H2O2,177 DNA,182 oncoprotein,178 Hg,183 and Ni.173 For 

analysis in real systems, researchers strive to augment sensitivity and decrease 

the limit of detection (LOD) of their sensors and it is well accepted that increasing 

the reactive surface area of a sensing device is an effective way to achieve these 
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goals.170 Because it is desirable to maintain the miniaturized geometry of sensing 

surfaces (minimal impact on surroundings), a number of approaches have been 

used to increase the physical reaction sites, including 3D architecture,170,172,179 

coatings of nanomaterials,177,180 flame etching,161 laser activation,184 and 

electrochemical treatments.81,185-187 These methods either generate new surface 

area or refresh the surface by removing adsorbed, interfering reactants. 

Different analysis methods including high speed chronoamperometry,172,176-180 

cyclic voltammetry (CV),172,173 and fast scan cyclic voltammetry (FSCV)47,174-176 

have been coupled with MEAs. Our research focuses on pairing FSCV to MEAs 

for real-time, sub-second measurements of multiple analytes with high selectivity 

and sensitivity.188,189 Our interests lie in applying FSCV to electrochemically 

detect neurotransmitters and trace metal ions.189-192 In Chapter 4, we described a 

generalized covalent modification strategy to functionalize carbon fiber 

microelectrodes (CFMs) with controllable densities.191 This procedure will 

ultimately create ultra-selective CFM surfaces via specific recognition adsorption 

sites. Our ultimate goal is to utilize this novel chemistry for simultaneous, 

selective detection of multiple different targets. To achieve this goal, we 

fabricated MEAs with a highly reproducible and easy to functionalize surface 

area, as described in this chapter. 

We extend on pioneering work by Wightman and McCarty who developed 

FSCV compatible PPF arrays and applied an extended electrochemical 

waveform81 to over-oxidize the resulting carbon surfaces for improved sensitivity 

towards dopamine.47,176 Here, to orient Wightman and McCarty’s work towards 
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our own goals, we concentrate on improving manipulation of physical electrode 

surface area without compromising the miniature electrode dimension. We 

achieve this by a novel method to fabricate nanofiber structured MEAs from 

negative pyrolyzed photoresist, which carries fundamental advantages over 

positive photoresist for our electrochemical applications. We employ a two-step 

pyrolysis process and apply a dual O2 plasma treatment including a primary 

plasma before and a secondary plasma after pyrolysis. We found that the two-

step pyrolysis improved film adhesion and by optimizing O2 plasma treatment 

parameters, we found high surface reactivity. We characterized the electrodes’ 

performance to assess their suitability for FSCV analysis and showed highly 

sensitive and stable FSCV measurements on prototype 4-channel arrays. 

The advanced strategy that we illustrate here is a robust approach for 

fabricating highly sensitive PPF MEAs with reproducible surface area, which will 

ultimately facilitate simultaneous multi-target FSCV detection. 

6.2 Materials and Methods 

6.2.1 Chemicals 

Dopamine solutions were prepared by dissolving dopamine HClO into Tris-

buffer prior to each experiment. Tris-buffer constituents (15 mM 

H2NC(CH2)OH)3·HCl, 140 mM NaCl, 3.25 mM KCl,1.2 mM CaCl2, 1.25 mM 

NaH2PO4·H2O, 1.2 mM MgCl2 and 2.0 mM Na2SO4 with the pH adjusted to 7.4) 

were purchased from EMD Chemicals Inc, USA. All aqueous solutions were 

made with deionized water. 

6.2.2 Electrode Fabrication 



www.manaraa.com

87	
	

The process flow of the electrode fabrication is shown in Figure 6.1. After 

standard cleaning, 1 µm silicon nitride was grown on a silicon substrate by low-

pressure chemical vapor deposition (LPCVD). Ti/Pt (20 nm/200 nm) was 

deposited by e-beam evaporation and patterned by lift-off to serve as electrode 

pads and interconnections. 1~2 µm silicon dioxide was deposited by plasma 

enhanced chemical vapor deposition (PECVD) and then patterned by wet etching 

to expose the electrodes and contact pads. SU-8 photoresist was then patterned 

onto the electrode area. Next, the sample was treated by a primary O2 plasma 

(8min, 300W, 30 sccm O2, 160 mTorr), in order to create the fiber structure of the 

SU-8. A two-step pyrolysis process was performed to convert the SU-8 polymer 

to carbon. The samples were first heated in a nitrogen environment at 300℃ for 

about 30min. Then the temperature was raised to 900 °C over about 20 min. The 

nitrogen gas was shut off and H2(2%)/Ar were introduced for 1h.  Finally the 

furnace was slowly cooled down to room temperature. Then the backside of the 

wafer was coated with aluminum and patterned. The wafers were then diced to 

release the electrodes. The secondary O2 plasma step was then applied to the 

obtained electrodes (30 s, 100 W, 30 sccm O2, 160 mTorr) for sensitivity 

enhancement. For easier reference in the following discussion, the samples with 

different fabrication and treatment conditions are labeled in Table 6.1. 
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Figure 6.1. Process flow for the fabrication and treatment of PPF MEAs. 

 

Table 6.1. Parameters for dual O2 plasma treatment in the device fabrication. 
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6.2.3 Electrode Characterization 

The morphologies of the produced electrodes were observed by scanning 

electron microscopy (SEM). The images were taken using a TUSCAN GAIA dual 

beam focused ion beam system. The surface roughness of the electrodes was 

assessed using a NanoScope AFM with silicon TESP probe tips (Nanosensors). 

The degree of graphitization was measured using the E-Z Raman spectroscopy 

system at 532 nm excitation. X-Ray photoelectron spectroscopy (XPS) 

measurements were performed on a Kratos Axis Ultra spectrometer that was 

equipped with a monochromatic Al X-ray source (hν = 1486.6 eV). The 

measurements were carried out at 150 W power (15 KV, 10 mA) in an analysis 

chamber at a pressure of < 5 x 10-9 mbar. 

6.2.4 Electrochemical Instrumentation and Data Acquisition 

All electrochemical experiments were performed using a Dagan ChemClamp 

potentiostat (Dagan, Minneapolis, MN). Custom-built software, WCCV (Knowmad 

Technologies, AZ), written in LABVIEW 2012 (National Instruments, Austin, TX), 

was used for background subtraction, data analysis and signal processing. A 

two-electrode system was employed. The working electrode was a 4-channel 

PPF MEA. An Ag/AgCl reference electrode was fabricated by electroplating Cl– 

ions onto a silver wire (A-M systems, WA) for 5 s. All color plots and cyclic 

voltammograms (CVs) were collected and averaged across 12 different 

electrodes of 3 devices. Pooled data is presented with error bars signifying the 

standard error of the mean (SEM). Student’s t tests were performed on paired 

data sets; p < 0.05 was taken as significant. 
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6.2.5 Flow Injection Analysis 

A MEA was fixed in a modified HPLC union (Elbow, PEEK 3432, IDEX, 

Middleboro, MA), and connected by the output of a flow injection apparatus. The 

apparatus consisted of a six-port HPLC loop injector affixed to a two-position 

actuator (Rheodyne model 7010 valve and 5701 actuator) and a syringe infusion 

pump (kd Scientific, model KDS-410, Holliston, MA). A rectangular pulse of 

analyte was introduced to the MEA surface at a flow rate of 2 mL min-1.  

6.3 Results and Discussion 

6.3.1 Electrode Design and Fabrication 

Spin coating with subsequent photoresist photolithographic patterning is a 

well-developed technique in the semiconductor industry. Pyrolysis of the 

photoresist material in an oxygen-free atmosphere is known to form carbon 

structures via depletion of volatile materials. Therefore, we employed the 

photoresist as a structural material to create carbon electrodes in an array 

formation that is integratable into microdevices. The novelty in our work is 

incorporation of a two-step pyrolysis procedure (two temperatures) and a dual O2 

plasma treatment (different power and duration) into the fabrication procedure. 

In our electrode design and fabrication, there are three aspects to address:  

a) Electrode geometry and dimensions: Our interests lie in biological and 

environmental analysis, thus electrode dimensions should be minimized; as a 

starting point, we chose an active geometric surface area ranging from 3000 to 

5000 µm2 which is comparable to the surface area of cylindrical CFMs used in 

previous studies.190,191 As shown in the optical images in Figure 6.2.a and b, four 
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electrodes were fashioned in parallel as an array to form the tip of a single device 

with a spacing of 30 µm. We aimed to keep our device under 30 µm to maintain 

negligible tissue damage193 and to prevent cross-talk 176.  

b) Adherence to functionalization strategy: It is important to produce an active 

carbon surface with sufficient reaction sites over a fixed geometric area. Our O2 

plasma pretreatment creates a forest of highly reactive carbon nanofibers, with 

abundant edge planes, as evident in Figure 6.2.c. These carbon nanofibers are 

responsible for greatly augmenting surface area compared with flat carbon film 

electrodes. This phenomenon can be seen in the SEM images of the PPF 

electrodes with and without O2 plasma in Figure 6.1.c and d respectively where 

untreated PPF resembles a flat plane while the pretreated PPF consists of 

carbon nanofiber structures. The mechanisms of nanofiber formation are well 

described;192 in brief, the SU-8 polymer chain is composed of both aromatic and 

linear sections, thus the etching rates of these two sections are different. This 

phenomenon, which results in a higher vertical than parallel growth rate, 

promotes the formation of nano-filaments, which are predecessors for nanofibers. 

In addition, SU-8’s high number of aliphatic chains means that the crystallization 

temperature for SU-8 is generally higher than for positive photoresist which 

already tend to contain high numbers of ringed hexagons. This means that at the 

same pyrolysis temperature, more defect sites will be formed on SU-8 than on 

positive photoresists;194 an auspicious surface effect for electrochemical 

applications.187  
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Figure 6.2. (a, b) Optical images of PPF MEAs. SEM images show the 
microstructure of the pyrolyzed photoresist (c) without and (d) with oxygen 
plasma pre-treatment. 

c) Stability: Here we define stability as adhesion of carbon structures to the 

substrate. SU-8 is known to provide better adhesion after pyrolysis compared 

with positive photoresists.159,194 A likely reason is that negative photoresists have 

low glass transition temperatures and low molecular weights, which means that 

the photoresist flows once melted during pyrolysis. The result of this effect is 

fewer pores and cracks that arise due to evolution.159,194 Because pores and 

cracks are usually the cause of poor adhesion, negative photoresists tend to 

display better stability. However, we and others still experienced instability via 

peeling of carbon patterns from the insulated substrate when using a traditional 

one step pyrolysis.192,194 (data not shown) We addressed this problem by 

employing a two-step heating process, as previously described.192 The 

(a) (b) 

(c) (d) 

1 µm 1 µm 
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measuring process involves employing a lower temperature (300 °C) as an initial 

step before utilizing 1000 °C. The additional lower temperature lead to better 

adhesion and allowed us to form devices stable in aqueous environments. This is 

likely because compared to a one-step process, the two-step process will reach 

the pyrolysis temperature less dramatically. This more gradual meander towards 

1000 °C more readily releases tensile stress near the interface between the 

photoresist and the substrate, that exists because of the thermal expansion 

coefficient. Additionally, for the same reason, less dramatic degassing reduces 

the odds of micro-crack formation. Both of these effects improve the adhesion of 

the film. Finally, we postulated that the primary O2 plasma step itself contributed 

to improving adhesion, and tested this notion in section 6.3.3 (vide infra). 

6.3.2 Characterization of PPF MEAs 

Having designed our electrodes to be of the correct dimensions, and to have 

a suitable surface area and stability for our applications, we next characterize our 

electrodes by employing a host of surface analysis methods. 

AFM 

To ensure that a dual O2 plasma treatment (vs. a one-step treatment) does 

not negatively influence PPF electrode surface structure, we employed atomic 

force microscopy (AFM). The surface topography of the PPF MEAs was 

evaluated by tapping mode AFM. Images (5 x 5 µm) are presented in Figure 6.3. 

Cross-sectional plots accompany each image. The surface features on PPF 

MEAs after primary O2 plasma are greatly enhanced (c, d) compared to PPF 

MEAs with no plasma treatment (as see in the SEM imagine, vide supra). For 
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both PPF MEAs with and without primary O2 plasma, there is no significant 

structural change after the secondary plasma, showing that a dual plasma 

process does not unfavorably impact the PPF surface. 

 

Figure 6.3. AFM images with associated line plot collect at (a) CMEA 100, (b) 
CMEA 103, (c) CMEA 200, and (d) CMEA 203.  
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Raman 

To verify that the surface of the nanofibers formed after the dual O2 plasma 

treatment is suitable for electrochemistry, we took advantage of the ability of 

Micro-Raman spectroscopy to indicate the presence of edge planes, regions with 

more reaction sites for electrochemical reactions, on our carbon nanofiber 

surfaces. Figure 6.4 shows Raman spectra of SU-8 before pyrolysis (CMEA 

001/002), after pyrolysis and no O2 plasma (CMEA 100), after pyrolysis and the 

secondary plasma (CMEA 103), after pyrolysis and the primary plasma (CMEA 

200) and after pyrolysis and dual plasma (CMEA 203). Before pyrolysis, no 

characteristic peak was observed, however after pyrolysis, two broad peaks 

centered at around 1350 (D band) and 1590 (G band) cm-1 were present. The 

band at around 1350 cm-1 is consistent with disordered carbon, while the band at 

around 1590 cm-1 can be assigned to crystallized graphitic structure.195 The 

integrated intensity ratio of D/G is frequently used as an indicator of the fraction 

of disordered SP2 C-C bonding present in the graphitic structure, therefore higher 

ID/IG is indicative of presence of more edge planes.196 We display these ratios for 

the pyrolyzed materials in Table 6.2. The primary plasma treated samples 

presents a higher ID/IG ratio (~ 1.1) compared to the untreated sample (ID/IG ~ 0.9) 

showing presence of more edge planes. It also can be seen that the primary 

plasma treated sample has lower peak intensity than the untreated one, possibly 

due to the formed nano structure.197  
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Figure 6.4 Raman spectra of photoresist derived carbon electrode with 
different treatments. Before pyrolysis, both pre-treated and un-pretreated 
samples (CMEA001/002) exhibit no characteristic peaks because of high 
fluorescence of SU8. After pyrolysis, pre-treated samples (CMEA 200) show 
a bigger ID/IG ratio than un-pretreated ones (CMEA 100), indicating more 
defects and more edge planes. The later application of oxygen plasma post-
treatment results in no significant change of ID/IG on both pre-treated (CMEA 
203) and un-pretreated samples (CMEA 103). 

 

Table 6.2. Comparison of ID/IG and O/C ratio of electrodes under different 
treatments. 

 CMEA 
001 

CMEA 
002 

CMEA 
100 

CMEA 
103 

CMEA 
200 

CMEA 
203 

Raman 
ID/IG No peak No peak 0.90 0.91 1.10 1.11 

O/C ratio 
from 
XPS 

1.01 10.02 0.13 1.06 0.13 3.5 
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XPS 

We aim to apply these electrodes to FSCV measurements. On CFMs, the 

electrochemical signal is inherently regulated by analytes’ adsorption, which itself 

is controlled by the presence of oxygen moieties on the carbon surface. Thus to 

verify that our electrodes contain sufficient surface oxygen, we utilized x-ray 

photoelectron spectroscopy (XPS) to analyze surface groups. Samples were 

vacuum-sealed immediately upon removal from pyrolysis furnaces or other 

process steps for later XPS spectra. Although this short-time exposure to air may 

result in some oxidation of the surface, it is thought that oxidation of pyrolyzed 

photoresist in air is slow enough to be negligible within the time frame of our 

experiment.198 Despite this, as a cautionary measure, we kept the exposure time 

in air for all our samples consistent. The changes in the XPS spectra, therefore, 

are considered to be primarily caused by our different fabrication conditions and 

treatments. Atomic concentration ratio, O/C, (see Table 6.2) was determined 

from the C1s and O1s spectra (Figure 6.5). Primary O2 plasma introduced more 

O2 to the surface as expected. After pyrolysis, the O1s peak diminished drastically 

for both O2 plasma treated and untreated samples. Previous studies on the 

pyrolysis of photoresist have indicated that oxygen and nitrogen are removed at 

300~500oC.196 In our case, the pyrolysis was carried out at 900 °C, which 

explains the O1s peak reduction. In fact, the reductive atmosphere used for 

pyrolysis is expected to generate a hydrogen terminated surface,159 which may 

interfere with electrochemical behavior of carbon surfaces. The increase in O/C 

after plasma treatment elicits the elimination of hydrogen and subsequent 
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surface occupation of oxygen groups, consistent with prior work showing that 

plasma treatments can form surface carboxyl functional groups.199 It is worth 

noting that the increase of O/C in primary plasma treated samples is greater than 

the one without primary plasma which may be attributable to more reactions sites 

for binding oxygen groups on the nanostructured surface originating from the 

primary plasma treatment. These data imply that primary O2 plasma is 

responsible for creating more reaction sites; while the secondary O2 plasma 

accounts for bringing O2 containing groups to the surface.  

 

Figure 6.5. XPS comparison of photoresist derived carbon electrode with 
different treatments. Before pyrolysis, oxygen plasma pre-treatment caused 
higher O/C ratio (CMEA 002) compared to un-pretreated sample (CMEA 001). 
After pyrolysis in a reductive environment, the O/C ratio decreased to similar 
level for both pre-treated (CMEA 200) and un-pretreated samples (CMEA 
100). Then oxygen plasma post-pyrolysis treatment was applied and led to 
the increased O/C ratio. Pre-treated samples (CMEA 203) showed bigger 
increase of O/C compared to un-pretreated samples (CMEA 103), due to 
larger surface area thus more oxygen binding sites. 
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These surface analyses illustrate that two-step pyrolysis and dual O2 plasma 

treatment (CMEA 202) create a rich carbon surface for electrochemistry, we next 

explore the suitability of this surface for FSCV analysis. 

6.3.3 FSCV Characterizations 

Electrochemical effects of dual O2 plasma treatments on MEAs 

FSCV utilizes scan rates typically between 400 and 1000 V s-1 and acquires 

one cyclic voltammogram in approximately 2 ms every 100 ms. The fast scan 

rate renders the method highly selective but also generates a large charging 

current. Background subtraction eliminates the charging current, resulting in 

cyclic voltammograms characteristic of redox active species that can be used as 

a “fingerprint” for identification. Dopamine, as a biologically important and well-

characterized molecule, was chosen as a standard analyte herein to compare 

with related studies. A typical FSCV characterization for the 4-electrode array is 

shown in Figure 6.6. Cyclic voltammograms were collected for 30 s during a flow 

injection analysis (FIA) of 1.0 µM dopamine onto CMEA 202. The traditional 

triangular waveform for dopamine detection was employed where the potential 

ramps from –0.4 V to +1.3 V and back at a scan rate of 400 V s-1 and application 

frequency of 10 Hz. A color plots illustrates this 30 s FIA event with injections of 

dopamine between 5 and 15 s (interpretation of a color plot can be found in 

Hashemi et al.200). Figure 6.6.a shows cyclic voltammograms taken during the 

dopamine injections at 4 channels of CMEA 202, indicated by the vertical white 

dashed line in the color plots from Figure 6.6.b. The redox peaks of dopamine 

are in accord with values reported for conventional CFMs under the same 
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experimental conditions.139 Figure 6.6.c displays the current vs. time profiles at 

the maximum oxidation potential taken from the horizontal white dashed line in 

the color plots.  Our optimized electrodes are highly sensitive, yielding 76.6 ± 4.9 

nA (n = 12 ± SEM) for a 1.0 µM dopamine injection, (compared with prior studies 

showing 10 nA for conventional CFMs with surface areas ~ 1000 µm2).176 

We attribute the vast sensitivity improvements to the O2 plasma treatments for 

three reasons: 

a) Our pre-treatment leads to formation of fine structures on the MEAs and 

increased physical surface areas within equivalent geometric surfaces. The result 

is increased FSCV response because mass-transport is less hindered thus 

analyte flux is increased.  

b) An additional advantage of O2 plasma treatment is the creation of edge 

planes (indicated by the Raman spectra, vide supra). Prior studies on pyrolytic 

graphite have shown that edge planes are the primary reaction site.201,202  

c) Previous studies on conventional CFMs have shown that the dopamine 

FSCV response is adsorption-controlled at physiological pH,162,175 thus over 

oxidation (to induce oxygen moieties on the carbon surface)175,176 and a negative 

resting potential between scans175,176 are used to promote this adsorption. Our 

O2 plasma treatment induces many oxygen containing functional groups to the 

reactive sites (XPS data, vide supra). As a result, dopamine adsorption, and 

hence sensitivity, on the electrode surface is greatly enhanced. 
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Figure 6.6. (a) A FIA response of electrode CMEA 202 to injection of 1.0 µM 
dopamine solution. (a) shows CVs taken at the vertical white dashed line in 
the corresponding color plots (b). (c) shows plots of current vs time, which 
was determined by taking i vs t from the horizontal white dashed line in the 
corresponding color plots (b).  

We next optimized the dual O2 plasma treatment conditions to establish the 

optimal electrode performance. 12 electrodes (3 devices) were selected for 

primary plasma treated (green) and untreated (purple) group. Figure 6.7 

compares the average current responses at the maximum dopamine oxidation 

potential for both groups under secondary O2 plasma for 0, 10, 20, and 30 s. In 

general, the green group showed more current response than the purple group. 

When the secondary plasma treatment time increased, the current response for 

both groups showed an overall increasing trend and reached plateau at 20 s. The 

plateaued response of the green group (~ 80 nA) was almost 3 times that of the 

purple group (~ 27 nA). At 30 s, both groups reached saturation state, likely due 

to a damaged surface via extended secondary plasma.203,204 Because there was 

no significant difference between the current responses at 20 s and 30 s for both 

80
 n

A
 

1.
0 

µM
 D

A
 

- 0.4 V --- 

1.3 V --- 

- 0.4 V --- 

V
 v

s 
A

g/
A

gC
l 

(a) 

(c) 

(b) 

0 10 20 30 

30 seconds 

-0.4 0.4 1.2 

0 10 20 30 

30 seconds 

-0.4 0.4 1.2 

0 10 20 30 

30 seconds 

-0.4 0.4 1.2 

0 10 20 30 

30 seconds 

-0.4 0.4 1.2 

V vs. Ag/AgCl 
Current / nA 

150 

0 
- 100 

Time / s 

Channel 1 Channel 4 Channel 3 Channel 2 



www.manaraa.com

102	
	

groups (p = 0.8015), the duration of secondary O2 plasma treatment was set at 

20 s. 

 

Figure 6.7. Effect of pre- and post- treatment on the sensitivity. The pre-
treated samples show greater response current than non-pretreated ones. 20 
s post-pyrolysis treatment saturates the surfaces with oxygen containing 
functional group. 

Calibration and limit of detection 

A standard calibration of the optimized MEAs for dopamine is presented in 

Figure 6.8 (n = 12 ± SEM). The calibration was conducted within a concentration 

range from 0.10 µM to 10 µM. The limit of detection (LOD) was 0.10 µM, which is 

significantly lower than reported values for PPF electrodes.176 A linear calibration 

range up to 5.0 µM is appropriate for biological analyses. The sensitivity (slope) 

in this range is 80 nA/µM as shown in the inset. 
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Figure 6.8. Detection limit (Sensitivity) of the optimized electrodes. The plot 
shows voltammetric peak current as a function of dopamine concentration. 
The error bars are the standard deviation (n = 12 ± SEM). Inset: Linear range 
of dopamine on pyrolyzed photoresist MEAs. All measurements were done at 
400 V s-1, 10 Hz in Tris buffer, pH 7.4.  

Stability  

As previously discussed, the primary reason for conventional PPF electrodes 

stability failure is peeling of the carbon film off the substrate and we addressed 

this by employing negative photoresist instead of positive photoresist. 

Successive injection tests were performed for both primary O2 plasma treated 

and untreated groups. We successively injected 1.0 µM dopamine onto the 

electrode for 50 times, and we recorded the peak oxidation peak currents each 

time (n = 12 ± SEM). The normalized currents (observed current / average 

current) are plotted versus injection number in Figure 6.9. Both groups showed 

consistent responses with 50 successive injections, yet the untreated PPF 

electrodes displayed a greater standard deviation, likely because the primary O2 
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plasma can cause certain compressive stress that further enhances the adhesion 

of the generated carbon films. 

 

Figure 6.9.  Effect of oxygen plasma pre-treatment on device stability. (a) 
Blue dots show the normalized current of dopamine oxidation at pre-treated 
MEAs for 50 times. (b) Red dots show the normalized current of dopamine 
oxidation at un-pretreated MEAs for 50 times. Horizontal lines indicate SD 
limits. 

The minimal standard deviation of pretreated MEAs also implies good 

reproducibility. Highly reproducible batch microfabrication processes are 

advantageous in decreasing electrode surface area deviations, thus improving 

the capability of reproducible electrochemical detection. In contrast, the 

traditional manually cut carbon fiber microelectrodes are less precisely controlled, 
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and are not suitable for accurate multi-site and multi-analyte detection, even 

though they can be bundled up to create a compact unit. 

6.4 Conclusions 

PPF MEAs are an important tool for providing multiple measurement 

platforms with versatile spatial geometry. In this paper, we described the 

development of PPF MEAs that give highly reproducible, sensitive and stable 

responses when coupled to FSCV. These desirable characteristics are due to 

nanofiber formation via a novel strategy, application of a two-step pyrolysis 

process and dual O2 plasma. We utilized a host of analytical methods to show 

that our strategy greatly improves film adhesion and surface reactivity. These 

devices represent an important first step towards dynamic, simultaneous and 

selective multi-analyte FSCV detection. 
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CHAPTER 7. CONCLUSION AND FUTURE PROSPECTUS 
 

Development of novel analytical methods for trace metal detection is 

important for understanding metals’ roles in environmental and biological 

systems. Our technique, fast-scan cyclic voltammetry (FSCV) at carbon-fiber 

microelectrodes (CFMs), is a powerful tool that can rapidly detect metal ions with 

high sensitivity and selectivity. Enormous efforts have been made to optimize this 

newly developed method from different angles to achieve its ultimate goal of 

application in complex natural systems. 

While electrochemical techniques have traditionally been limited by their 

temporal resolution, Hg toxicity and stability concerns, we presented the use of 

FSCV towards fast, safe, and robust analysis of metals. Effective advancements 

were also made in model solution creation and waveform optimization. This 

method showed powerful strengths for not only real-time monitoring of fluctuating 

metal ions in real environmental samples, but also in fast metal speciation 

studies. This research built concrete theoretical and experimental foundations for 

expanding FSCV to analyzing other metal species. 

Selectivity was improved through electrode modification on CFMs. We utilized 

and redesigned previously reported methods to develop an efficient, robust, and 

tunable covalent functionalization strategy. Diazonium electrochemical reduction 

followed by click chemistry was applied for the attachment of selective molecules 

to CFMs. This universal modification approach was initially characterized through 

grafted ferrocene as an in-situ redox label with different densities. Using 

optimized conditions, we attached Cu(II) ionophores covalently to fabricate Cu(II) 
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selective CFMs. An additional elevated level of selectivity was achieved by 

blocking the surface oxygen groups to prevent the adsorption of other species. 

This covalent modification method provided the groundwork for creating a variety 

of functionalized CFMs with improved selectivity while maintaining good 

sensitivity, response, stability, and lifetime. 

In parallel work, we developed pyrolyzed photoresist film (PPF) 

microelectrode arrays (MEAs) as another sensor platform to be coupled with 

FSCV. PPF MEAs have multiple sensing channels and can be fabricated in bulk. 

We employed a two-step pyrolysis process and a dual O2 plasma for the carbon 

nanofiber formation on the novel FSCV compatible MEAs. Our strategy greatly 

improved film adhesion, surface reactivity, and spatial geometry. These devices 

represent an important first step towards dynamic, simultaneous and selective 

multi-analyte FSCV detection. 

Future research will be focused on integrating the covalent modification 

strategy into the development of multiple analyte selective MEAs. In Chapter 5, 

we covalently attached Cu(II) ionophores to CFMs. The real power of this 

approach is apparent in modification for MEAs fabricated in Chapter 6. We 

purposefully designed the reaction scheme to be dependent on electrochemical 

manipulation. For example, modification of bulk carbon fibers would be less 

challenging (fibers, reagents and ionophores could be reacted in one vessel). 

However, while this approach is useful for producing microelectrodes from a 

stock of modified fibers, if we wish to address a single channel on a MEA, it 

would fail. Here, the ability to modify individual electrodes by applying potential to 
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one channel is invaluable. In our covalent modification strategy, a negative 

potential will be applied to only one channel of the 4-channel device at a time to 

electrochemically reduce alkynyl aryl diazonium salts. The click reaction will be 

followed for attaching azide-appended Cu(II)-ionophores to the alkyne-scaffolded 

channel. As in Chapter 4 and Chapter 5, we will test combinations of organic 

compounds’ concentrations, potentials, reaction time and solvents in order to find 

optimum parameters to be used in the modification of MEAs.  

Individually addressable microelectrode arrays can be modified to give 

selective and simultaneous multi-analyte readouts. One promising direction is to 

graft different ionophores, which are selective to different metal ions and other 

analytes of interest. Upon completion of this objective, we will have sufficient 

fundamental understanding of the method to impact future water detection 

technologies. Moreover, the completed method is very low cost and portable. Our 

finished device composed of simple carbon and silicon chips that can be 

integrated into water streams or immersed into aqueous systems. Real-time 

selective trace metal detection technologies can aid trace metal mitigation by 

providing diagnostic chemical information. Fundamentally our studies will pave 

the way for ultra-fast, simultaneous measurements of any electroactive molecule; 

this has transformative analytical implications in countless fundamental, health, 

biological and environmental arenas. 
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APPENDIX A. OPTIMIZATION OF PB(II) FSCV WAVEFORM 
UTILIZED IN CHAPTER 3   

 

 

Figure S3.1. A. The maximum reduction current at -0.6 V (blue) compared to the 
current at -1.2 V (purple) for every positive potential studied. B. The maximum 
reduction current at 1.3 V (purple) compared to the current at 0.7 V (blue) for 
every negative potential studied. Stars signify statistically different values. 

 

  



www.manaraa.com

110	
	

APPENDIX B. SYNTHESIS OF ORGANIC COMPOUNDS IN 
CHAPTER 4 

 

 

4-((trimethylsilyl)ethynyl)aniline (3a): 

4-Iodoaniline (426 mg, 1.94 mmol), copper(I) iodide (37 mg, 0.0.195 mmol), 

triphenylphosphine (51 mg, 0.195 mmol), and Pd(PPh3)2Cl2  (68 mg, 0.097 mmol) 

were dissolved in dry THF (4.3 mL) and triethylamine (2.4 mL) was added at 

room temperature with exclusion of light, then the solution was degassed by 3 

freeze pump and thaw cycles. After 10 min stirring, trimethylsilylacetylene (220 

mg, 316 µL, 2.24 mmol) was added dropwise to this solution. After 16 h, the 

reaction mixture was filtered through celite and precipitates were washed with 

ethyl acetate (20 mL). Then the filtrate was washed with distilled water and the 

layer were separated, the aqueous layer was extracted with EtOAc (3 x 20 mL), 

then the combined organic extracts were washed with brine, dried over 

anhydrous MgSO4 and the solvent was removed under reduced pressure and the 

crude was purified by column chromatography with 0-20% EtOAc/Hexane 

gradient isolated as a slight yellow solid (367 mg, >99% yield). NMR data 

matched literature.64,65 

4-((tert-butyldimethylsilyl)ethynyl)aniline (3b): 

4-Iodoaniline (500 mg, 2.283 mmol), copper(I) iodide (43 mg, 0.228 mmol), 

triphenylphosphine (60 mg, 0.228 mmol), and Pd(PPh3)2Cl2  (80 mg, 0.114 mmol) 

NH2

I

NH2

R3Si
PdCl2(PPh3)2

Et3N, CuI, THF

1 3

R3Si

2

+
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were dissolved in dry THF (5.1 mL) and triethylamine (2.8 mL) was added at 

room temperature with exclusion of light, then the solution was degassed by 3 

freeze pump and thaw cycles. After 10 min stirring, t-butyldimethylsilylacetylene 

(368 mg, 453 µL, 2.63 mmol) was added dropwise to this solution. After 16 h, the 

reaction mixture was filtered through celite and precipitates were washed with 

ethyl acetate (20 mL). Then the filtrate was washed with distilled water and the 

layer were separated, the aqueous layer was extracted with EtOAc (3 x 20 mL), 

then the combined organic extracts were washed with brine, dried over 

anhydrous MgSO4 and the solvent was removed under reduced pressure and the 

crude was purified by column chromatography with 0-20% EtOAc/Hexane 

gradient isolated as a slight white solid (513 mg, 97% yield); 1H NMR (400 MHz, 

CDCl3) δ 7.29 – 7.26 (m, J = 8.6 Hz, 2H), 6.58 (d, J = 8.6 Hz, 2H), 0.98 (s, 9H), 

0.16 (s, 5H); 13C NMR (101 MHz, CDCL3) δ 146.7, 133.4, 114.5, 112.7, 106.6, 

89.6, 77.3, 77.0, 76.7, 26.2, 16.8, -4.5; IR  

4-((triisopropylsilyl)ethynyl)aniline (3c): 

4-Iodoaniline (500 mg, 2.283 mmol), copper(I) iodide (43 mg, 0.228 mmol), 

triphenylphosphine (60 mg, 0.228 mmol), and Pd(PPh3)2Cl2  (80 mg, 0.114 mmol) 

were dissolved in dry THF (5.1 mL) and triethylamine (2.8 mL) was added at 

room temperature with exclusion of light, then the solution was degassed by 3 

freeze pump and thaw cycles. After 10 min stirring, triisoprpylsilylacetylene (478 

mg, 589 µL, 2.63 mmol) was added dropwise to this solution. After 16 h, the 

reaction mixture was filtered through celite and precipitates were washed with 

ethyl acetate (20 mL). Then the filtrate was washed with distilled water and the 
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layer were separated, the aqueous layer was extracted with EtOAc (3 x 20 mL), 

then the combined organic extracts were washed with brine, dried over 

anhydrous MgSO4 and the solvent was removed under reduced pressure and the 

crude was purified by column chromatography with 0-20% EtOAc/Hexane 

gradient isolated as a slight yellow oil (560 mg, 90% yield). NMR data matched 

literature.64,65 

 

 

4-((trimethylsilyl)ethynyl)benzenediazonium tetrafluoroborate (4a): 

The aniline (3a) (310 mg, 1.64 mmol) was dissolved in ether (1 mL) then 

water (0.9 mL) and 48w% aqueous HBF4 (1 mL) were added the mixture was 

cooled to 0 °C then NaNO2 was added slowly. The reaction was allowed to warm 

up to ambient temperature in melting ice bath and stirred over night with the flask 

opened to allow the ether to evaporate. The reaction was filtered through a 

Büchner funnel, the precipitate was washed with ice cold 5wt% aqueous NaBF4 

(5 mL), then ice cold water (5 mL), then ice cold methanol (5 mL), then ice cold 

ether (5 mL), affording beige solid (390 mg, 83% yield). NMR spectra matched 

literature.64,65 

4-((tert-butyldimethylsilyl)ethynyl)benzenediazonium tetrafluoroborate 

(4b): 

NH2

R3Si

N2+

R3Si
NaNO2, HBF4 (4 M)

Et2O
BF4-

43
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The aniline (3b) (195 mg, 0.843 mmol) was dissolved in ether (1 mL) then 

water (1.1 mL) and 48w% aqueous HBF4 (1 mL) were added the mixture was 

cooled to 0 °C then NaNO2 (290 mg, 4.213 mmol) was added slowly then 

allowed to warm up to ambient temperature in melting ice bath and stirred over 

night then with the flask opened to let the ether to evaporate. The reaction was 

filtered through a Büchner funnel, the precipitate was washed with ice cold 5wt% 

aqueous NaBF4 (5 mL), then ice cold water (5 mL), then ice cold methanol (5 

mL), then ice cold ether (5 mL), affording beige solid (222 mg, 80% yield); 1H 

NMR (400 MHz, CDCL3) δ 8.55 (d, J = 8.9 Hz, 2H), 7.73 (d, J = 8.9 Hz, 2H), 0.98 

(s, 9H), 0.21 (s, 6H);13C NMR (101 MHz, CDCL3) δ 136.55, 134.11, 132.75, 

112.47, 108.06, 102.47, 77.32, 77.00, 76.68, 26.02, 16.70, -5.04; HRMS [M+] m/z 

ES calc’d for [C10H14O2]+: 189.0886; observed: 189.1388; IR 2937, 2874, 1736, 

1450 cm–1. 

4-((triisopropylsilyl)ethynyl)benzenediazonium tetrafluoroborate (4c) 

The aniline (3c) (200 mg, 0.731 mmol) was dissolved in ether (1 mL) then 

water (0.9 mL) and 48w% aqueous HBF4 (1 mL) were added the mixture was 

cooled to 0 °C then NaNO2 (252 mg, 3.656 mmol) was added slowly then allowed 

to warm up to ambient temperature in melting ice bath and stirred over night with 

the flask opened to allow the ether to evaporate. The reaction was filtered 

through a Büchner funnel, the precipitate was washed with ice cold 5wt% 

aqueous NaBF4 (5 mL), then ice cold water (5 mL), then ice cold methanol (5 mL) 

then ice cold ether (5 mL), affording beige solid (198 mg, 72% yield). NMR 

spectra matched literature.64,65 
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Azidomethylferrocene 

Azidomethylferrocene was synthesized according to literature procedures.205  
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APPENDIX C. SYNTHESIS OF AZIDE APPENDED IONOPHORES 
IN CHAPTER 5 

 

 

(4-amino-1,2-phenylene)dimethanol (4): 

Pd/C 10 wt% (116.3 mg, 0.109 mmol) was added to a solution of 3 (2.00 g, 

10.93 mmol) in methanol (109 mL) under an argon blanket, then the flask was 

sealed with a rubber septum and was subjected to 3 vacuum hydrogen cycles. 

The reaction was stirred under hydrogen balloon atmosphere for 1.5 h, and then 

was filtered through celite. The solvent was removed under reduced pressure 

and 4 was isolated as a yellow solid (1.67 g, >99%). 1H NMR (400 MHz, CD3OD) 

δ 7.08 (d, J = 8.0 Hz, 1H), 6.80 (d, J = 2.0 Hz, 1H), 6.61 (dt, J = 10.4, 5.2 Hz, 1H), 

4.62 (s, 2H), 4.53 (d, J = 13.7 Hz, 2H); 13C NMR (101 MHz, CD3OD) δ 148.6, 

141.7, 131.3, 129.6, 116.6, 115.2, 63.3, 63.1; HRMS [M+Na+] m/z ESI calc’d for 

[C8H11NO2Na]+: 176.0687 observed: 176.0678; IR 3356, 3290, 3186, 2345. 

 

 

(4-azido-1,2-phenylene)dimethanol (5): 

Azidotrimethylsilane (339 mg, 2.94 mmol) was added to a solution of 4 (375 

mg, 2.45 mmol) in MeCN at 0 °C, then t-butyl nitrite (278 mg, 2.70 mmol) was 

added slowly over 15 min. The reaction was allowed to warm up to room 

O2N
OH
OH

H2N
OH
OHPd/C 10 wt%

MeOH

3 4

H2N N3

TMS-N3
t-butyl nitrite

MeCN

4 5

OH
OH

OH
OH
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temperature and stirred until TLC showed complete conversion of starting 

material. The solvent was removed under reduced pressure and the crude 

product was purified by flash column chromatography 0-10% MeOH/DCM. The 

azide 5 was isolated as a yellow solid (313 mg, 71%).  1H NMR (400 MHz, 

CD3OD) δ 7.40 (d, J = 8.1 Hz, 1H), 7.15 (t, J = 8.8 Hz, 1H), 6.96 (dd, J = 8.1, 2.4 

Hz, 1H), 4.70 (s, 2H), 4.64 (s, 2H); 13C NMR (101 MHz, CDCL3) δ 141.42, 140.26, 

135.85, 131.30, 120.15, 118.65, 63.79, 63.54; HRMS [M+Na+] m/z ESI calc’d for 

[C8H9N3O2Na]+: 202.0592 observed: 202.0587; IR 3309, 2924, 2870.    

 

 

4-azido-1,2-bis(bromomethyl)benzene (6): 

PBr3 (1.46 g, 5.39 mmol) was added to a solution of 5 (322 mg, 1.797 mmol) 

in methylene chloride (6 mL) at 0 °C then was warmed up to rt and stirred until 

TLC showed complete consumption of starting materials about 4h. The reaction 

was diluted with methylene chloride (10 mL) and washed half saturated NaHCO3 

solution (10 mL) was added layers were separated and the aqueous layer was 

extracted with DCM (3 x 10 mL). The combined organics were dried over MgSO4, 

the solvent was removed under reduced pressure, the dibromide 6 was isolated 

as a yellow oil (341 mg, 62%) and used without purification. 

 

Br
Br

N3

PBr3

DCM

OH
OH

N3

5 6
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(4-azido-1,2-phenylene)bis(methylene) bis(diisobutylcarbamodithioate) 

(7): 

Carbon disulfide (166 mg, 2.18 mmol), diisobutyl amine (282 mg, 2.18 mmol), 

and potassium carbonate (301 mg, 2.18 mmol) were added successively to a 

solution 6 (330 mg, 1.09 mmol) in methanol at 0 °C, then the reaction was 

warmed up to room temperature and stirred for 20 h. The reaction was 

concentrated under reduced pressure then water (10 mL) was added the 

aqueous layer was extracted with methylene chloride (4 x 10 mL) and the 

combined organics were dried over Na2SO4, The crude was purified by column 

chromatography eluted with 0-50% dichloromethane/hexanes, 7 was isolated as 

a yellow oil (531 mg, 88%). 1H NMR (400 MHz, CDCL3) δ 7.41 (d, J = 8.3 Hz, 

1H), 7.11 (d, J = 2.3 Hz, 1H), 6.88 (dd, J = 8.2, 2.4 Hz, 1H), 4.61 (s, 2H), 4.60 (s, 

2H), 3.96 – 3.75 (m, 4H), 3.63 – 3.43 (m, 4H), 2.53 – 2.38 (m, 2H), 2.36 – 2.17 

(m, 2H), 0.98 – 0.84 (m, 24H); 13C NMR (101 MHz, CDCL3) δ 196.36, 196.09, 

139.63, 137.18, 132.30, 131.58, 120.99, 118.55, 63.18, 63.06, 60.93, 39.44, 

27.59, 26.23, 20.28; HRMS [M+H+] m/z ESI calc’d for [C26H44N5S4]+: 554.2480 

observed: 554.2460; IR 2958, 2924, 2110, 1597, 1458. 

	  

Br
Br

N3

CS2
iBu2NH
K2CO3

MeOH N3

6 7

S
S

S

N(iBu)2
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N(iBu)2
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APPENDIX D. DIAZONIUM ELECTROCHEMICAL REDUCTION ON 
CARBON FIBER MICROEELCTRODES IN CHAPTER 5 

 

Figure S5.1.A illustrates the creation of the scaffolds. Upon a reduction 

potential, diazonium reagents were reduced on CFM and created a monolayer of 

TMS bearing scaffolds. The alkyne-terminated scaffolds were revealed by 

exposure to TBAF for deprotection of TMS moieties and afforded CFM 3. The 

surface variations caused by these reactions were followed electrochemically 

with FSCV of a 1.0 µM Cu(II) in 0.1 mM NaCl solution as shown in Figure S5.1.A. 

The amplitudes of reduction peaks of Cu(II) at three stages were collected and 

compared as shown in Figure S5.1.B for (180 ± 10) nA, (20 ± 7.0) nA, and (150 

± 14) nA respectively. After grafting a layer with bulky protection groups 

(diazonium reduction CV shown in the inset), the access of Cu(II) to the 

oxygenated groups are almost totally inhibited, therefore the signal was largely 

reduced. Figure S5.1.C shows the color plots collected under a waveform of -

1.2V/ + 0.8 V for 30s and Cu(II) was injected during 5 to 15 s. Figure S5.1.D 

shows the CVs taken at the dashed lines and redox peaks are recognized at - 

0.7/0V. 
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Figure S5.1 Electrochemical characterization of scaffolds created through 
diazonium electrochemical reduction. 
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 Detection of trace metals has great importance in environmental and 

biological applications. While traditional electrochemical techniques have played 

critical roles in this field, their usefulness is limited by temporal resolution, Hg 

toxicity and stability concerns. Recently, we developed a method using fast-scan 

cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMs) to achieve 

rapid measurement of metal ions with high sensitivity, selectivity, and stability. 

Through optimizations this method showed strengths in real-time trace metal 

analysis.            

 Analytical selectivity was improved via covalent functionalization on CFMs. 

We employed diazonium electrochemical reduction followed by click chemistry to 

create robust covalent attachments. After optimization and characterization with 

ferrocene as proof of principle of the modification, we showcased its application 

through grafting Cu(II) ionophores onto CFMs. The selectivity was further 

reinforced via inhibition of other species’ adsorption at surface oxygen groups. 
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This stepwise functionalization approach served as a universal platform for 

elevating CFMs’ selectivity, while retaining sensitivity, response, stability, and 

lifetime.           

 In parallel work, pyrolyzed photoresist film (PPF) microelectrode arrays 

(MEAs) were fabricated to extend the borderlines of FSCV towards simultaneous 

multi-analyte analysis. The PPF MEAs maintained CFM’s carbon-fiber structures 

but provided more sensing channels. We employed a two-step pyrolysis process 

and a dual O2 plasma treatment to improve fabrication repeatability, surface 

reactivity, and spatial geometry. Our technique has evident potential to achieve 

real-time simultaneous detection of various electroactive molecules and be 

employed for numerous applications in complex biological and environmental 

systems.           
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